phased array radar
Recently Published Documents


TOTAL DOCUMENTS

802
(FIVE YEARS 197)

H-INDEX

29
(FIVE YEARS 3)

Author(s):  
D. Govind Rao ◽  
N. S. Murthy ◽  
A. Vengadarajan

This paper deals with the design and implementation of a digital beam former architecture which is developed for 4/8/12/16 element phased array radar. This technique employs a very high performance FPGA to handle large no of parallel complex arithmetic operations including digital down conversion and filtering. A 3MHz echo signal riding on an IF carrier of 60 MHz is under sampled at 50 MHz and down converted digitally to bring the spectrum to echo signal baseband. After suitable decimation filtering, the I and Q channels are multiplied with Recursive Least Squares based optimized complex weights to form partial beams. The prototype architecture employs techniques of pipelining and parallelism to generate multiple beams simultaneously from a 16 element array within 1 μsec. This can be extended to several number of arrays. The critical components employed in this design are eight 16 bit 125 MS/s ADCs and a very high performance state of the art Xilinx FPGA device Virtex-5 FX 130T having several on-chip resources and 150 MHz clock generators.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yili Hu ◽  
Yongbo Zhao ◽  
Sheng Chen

Airborne phased array radar (PAR) suffers from multipath problems when flying over a calm sea surface. The existence of a multipath phenomenon will cause the electromagnetic echo of the same target to be reflected back to the airborne PAR from two paths, namely, direct path (DP) and multipath. Compared with the ground-based radar, the target echo received by airborne PAR in the multipath environment has two important characteristics: one is that the DP signal and the multipath signal exist in different range bins, and the other is that the radar cross section (RCS) in the DP direction may be smaller than that in the multipath direction. Considering these two characteristics, this paper first proposes a target pairing algorithm for matching the DP range and multipath range of the same target in signal detection, and then, combined with the cell-averaging constant false alarm rate (CA-CFAR) detection model, an incoherent integration detection method for airborne PAR in the multipath environment is proposed. In the target pairing process, the geometric structure relationship of the airborne PAR model can be fully utilized. After a successful target pairing process, the energy of the multipath signal will be incoherently accumulated into the corresponding DP range bin, so as to improve the probability of DP range bin data passing the detection threshold. In essence, the proposed method makes full use of multipath energy to improve the detection capability of airborne PAR in the multipath environment. Finally, the detection probability of the proposed method is given, and the detection performance is analyzed.


Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2808
Author(s):  
Guo Guo ◽  
Zhenlin Yan ◽  
Zhenzhen Sun ◽  
Jianwei Liu ◽  
Ruichao Yang ◽  
...  

A novel power amplifier unit for a phased array radar with 2 × 2 output ports for a vacuum electron device is proposed. Double parallel connecting microstrip meander-lines are employed as the slow-wave circuits of a large power traveling wave tube operate in a Ka-band. The high frequency characteristics, the transmission characteristics, and the beam–wave interaction processes for this amplifier are simulated and optimized. For each output port of one channel, the simulation results reveal that the output power, saturated gain, and 3-dB bandwidth can reach 566 W, 27.5 dB, and 7 GHz, respectively. Additionally, the amplified signals of four output ports have favorable phase congruency. After fabrication and assembly, transmission tests for the 80-period model are performed preliminarily. The tested “cold” S-parameters match well with the simulated values. This type of integratable amplifier combined with a vacuum device has broad application prospects in the field of high power and broad bandwidth on a millimeter wave phased array radar.


Author(s):  
Jason E. Nobles ◽  
K. Smiley ◽  
D. Bueno Baques ◽  
E. Economou ◽  
Jakub Herman ◽  
...  

Abstract Phased array radar systems are used for a wide variety of applications including the precise tracking of airborne craft for air traffic control and providing accurate atmospheric condition information important in weather forecasting. Reducing the cost and size of these radar systems will open new fields to the use of this technology. Using phase control implemented through liquid crystal materials we have created a compact, phased array radar system operating in the microwave range. We report on the construction and testing of a linear, eight element phased array antenna system operating at 32 GHz with element phase controlled by a dual frequency nematic liquid crystal media used as a tunable dielectric. The system was designed using CST Design Studios and Ansys HFSS software. Dual frequency liquid crystals are used to improve beam steering response times. We demonstrate 42 millisecond beam switching times, defined as the time to change the beam focus from one point to another point, controllable beam formation, and beam steering profiles consistent with analytical results and simulation models. The device footprint is a square with sides 9.5 cm long and a thickness less than 2.5 mm. Such a module is easily stackable to create an 8 × 8 phased array system. Our design incorporates a modular construction using PCB for the antennas and input circuitry and a liquid crystal phase control cell with microwave glass substrates. This design simplifies design, construction, and testing as compared to on-glass designs. The device shows an improvement in point-to-point scanning speeds by a factor of 3 as compared to similar liquid crystal based devices and provides continuously variable tuning. Such a device can be used in a system for reduced visibility, directional range finding suitable for automobile collision avoidance systems and rotary wing aircraft landing aids. 


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7382
Author(s):  
Yue-Ming Wu ◽  
Hao-Chung Chou ◽  
Cheng-Yung Ke ◽  
Chien-Cheng Wang ◽  
Chien-Te Li ◽  
...  

Phased array technology features rapid and directional scanning and has become a promising approach for remote sensing and wireless communication. In addition, element-level digitization has increased the feasibility of complicated signal processing and simultaneous multi-beamforming processes. However, the high cost and bulky characteristics of beam-steering systems have prevented their extensive application. In this paper, an X-band element-level digital phased array radar utilizing fully integrated complementary metal-oxide-semiconductor (CMOS) transceivers is proposed for achieving a low-cost and compact-size digital beamforming system. An 8–10 GHz transceiver system-on-chip (SoC) fabricated in 65 nm CMOS technology offers baseband filtering, frequency translation, and global clock synchronization through the proposed periodic pulse injection technique. A 16-element subarray module with an SoC integration, antenna-in-package, and tile array configuration achieves digital beamforming, back-end computing, and dc–dc conversion with a size of 317 ×149 × 74.6 mm3. A radar demonstrator with scalable subarray modules simultaneously realizes range sensing and azimuth recognition for pulsed radar configurations. Captured by the suggested software-defined pulsed radar, a complete range–azimuth figure with a 1 km maximum observation range can be displayed within 150 ms under the current implementation.


Sign in / Sign up

Export Citation Format

Share Document