scholarly journals Delay versus energy consumption of the IEEE 802.16e sleep-mode mechanism

2009 ◽  
Vol 8 (11) ◽  
pp. 5383-5387 ◽  
Author(s):  
S. Vuyst ◽  
K. Turck ◽  
D. Fiems ◽  
S. Wittevrongel ◽  
H. Bruneel
2019 ◽  
Vol 9 (4) ◽  
pp. 4389-4391
Author(s):  
S. Murawwat ◽  
I. Manzoor ◽  
H. Akash ◽  
J. Ahmed

Researchers and mobile network operators are dealing with the steep rise in energy consumption of mobile phones. A massive amount of phones are available in the market which are updating services from time to time. The problem lies in their battery drainage in response to the usage of internet-based applications including online streaming, multimedia requests, social networking usage and many more. In this research, a new technique is proposed and evaluated for energy optimization in mobile phones by exploiting the listening cycle of the mobile station (MS) wake-up mode while connected to the base station (BS) that is connected to a mobile network based on IEEE 802.16e. An MS cannot communicate with the BS if it is in the sleep mode while the other is in the wake-up mode. Service time and sojourn time are assumed to be exponential and based on t-distribution. The confidence interval comes up to 95% for our technique. The relative error is computed between the earlier techniques available and the approximated proposed one. Results show that there is a considerable improvement in energy consumption as compared to the other available techniques.


2012 ◽  
Vol 35 (14) ◽  
pp. 1672-1683 ◽  
Author(s):  
C.-Y. Wu ◽  
H.-J. Ho ◽  
S.-L. Lee

Author(s):  
Vijendra Babu D. ◽  
K. Nagi Reddy ◽  
K. Butchi Raju ◽  
A. Ratna Raju

A modern wireless sensor and its development majorly depend on distributed condition maintenance protocol. The medium access and its computing have been handled by multi hope sensor mechanism. In this investigation, WSN networks maintenance is balanced through condition-based access (CBA) protocol. The CBA is most useful for real-time 4G and 5G communication to handle internet assistance devices. The following CBA mechanism is energy efficient to increase the battery lifetime. Due to sleep mode and backup mode mechanism, this protocol maintains its energy efficiency as well as network throughput. Finally, 76% of the energy consumption and 42.8% of the speed of operation have been attained using CBI WSN protocol.


2012 ◽  
Vol 56 (16) ◽  
pp. 3639-3654 ◽  
Author(s):  
Chien-Chi Kao ◽  
Shun-Ren Yang ◽  
Hsin-Chen Chen

Author(s):  
Anand Babu

<p>To increase the network lifetime of WSNs is a major concern. Network lifetime can be increased by reducing energy consumptions through MAC protocols periodic and a- periodic sleep mode mechanisms. The short duty cycle makes sensors have low energy consumption rate but increases the transmission delay and long duty cycle makes the sensor to increase the energy consumption and reduce the delay. Duty cycle need to be adaptively varied to reduce the idle listening. In the proposed Adaptive Duty cycle MAC (ADMAC) protocol, duty cycle is varied by taking nodes rate of energy consumption and filled queue length in account. It reduces the delay and energy spent by reducing the idle listening. ADMAC is realized in NS2 and its performance is compared with SMAC.</p>


2020 ◽  
Vol 12 (6) ◽  
pp. 2264 ◽  
Author(s):  
Hamzeh Khalili ◽  
David Rincón ◽  
Sebastià Sallent ◽  
José Ramón Piney

The rapid deployment of passive optical access networks (PONs) increases the global energy consumption of networking infrastructure. This paper focuses on the minimization of energy consumption in Ethernet PONs (EPONs). We present an energy-efficient, distributed dynamic bandwidth allocation (DBA) algorithm able to power off the transmitter and receiver of an optical network unit (ONU) when there is no upstream or downstream traffic. Our main contribution is combining the advantages of a distributed DBA (namely, a smaller packet delay compared to centralized DBAs, due to less time being needed to allocate the transmission slot) with energy saving features (that come at a price of longer delays due to the longer queue waiting times when transmitters are switched off). The proposed algorithm analyzes the queue size of the ONUs in order to switch them to doze/sleep mode when there is no upstream/downstream traffic in the network, respectively. Our results show that we minimized the ONU energy consumption across a wide range of network loads while keeping delay bounded.


Sign in / Sign up

Export Citation Format

Share Document