Adaptive Duty Cycle Medium Access Control Protocol for Wireless Sensor Networks

Author(s):  
Anand Babu

<p>To increase the network lifetime of WSNs is a major concern. Network lifetime can be increased by reducing energy consumptions through MAC protocols periodic and a- periodic sleep mode mechanisms. The short duty cycle makes sensors have low energy consumption rate but increases the transmission delay and long duty cycle makes the sensor to increase the energy consumption and reduce the delay. Duty cycle need to be adaptively varied to reduce the idle listening. In the proposed Adaptive Duty cycle MAC (ADMAC) protocol, duty cycle is varied by taking nodes rate of energy consumption and filled queue length in account. It reduces the delay and energy spent by reducing the idle listening. ADMAC is realized in NS2 and its performance is compared with SMAC.</p>

Duty cycle of a Medium Access Control (MAC) protocol is made up of sleep phase, wake-up phase and listen phase. MAC protocols usually proposes to optimize the duration of the wake-up and listen phases, in order to increase the duration of the sleep phase, thereby reducing the unwanted energy consumption of the wireless node. In this paper, we propose an Artificial Intelligence (AI) and machine learning (ML) based approach, which uses a hybrid combination of Time Division Multiple Access (TDMA), Bitmap Assisted MAC (BMA) and Sensor MAC (SMAC). The machine learning layer utilizes the duty cycle in the MAC layer, and generates multiple solutions for a given wireless communication. The AI layer then selects the best solution from the generated solutions by incorporating a duty cycle factor in the selection function, thereby optimizing the duty cycle of the protocol. The proposed system shows a 15% improvement in communication speed, and a 10% reduction in energy consumption across multiple communications. We plan to further extend this work for rural India, and apply it to real time agricultural applications.


Author(s):  
Vijendra Babu D. ◽  
K. Nagi Reddy ◽  
K. Butchi Raju ◽  
A. Ratna Raju

A modern wireless sensor and its development majorly depend on distributed condition maintenance protocol. The medium access and its computing have been handled by multi hope sensor mechanism. In this investigation, WSN networks maintenance is balanced through condition-based access (CBA) protocol. The CBA is most useful for real-time 4G and 5G communication to handle internet assistance devices. The following CBA mechanism is energy efficient to increase the battery lifetime. Due to sleep mode and backup mode mechanism, this protocol maintains its energy efficiency as well as network throughput. Finally, 76% of the energy consumption and 42.8% of the speed of operation have been attained using CBI WSN protocol.


2013 ◽  
Vol 19 (43) ◽  
pp. 1017-1022
Author(s):  
Yorimasa IKI ◽  
Satoshi SUDO ◽  
Hiroshi YOSHINO ◽  
Shuzo MURAKAMI ◽  
Kazuaki BOGAKI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document