E-PULRP: Energy Optimized Path Unaware Layered Routing Protocol for Underwater Sensor Networks

2010 ◽  
Vol 9 (11) ◽  
pp. 3391-3401 ◽  
Author(s):  
Sarath Gopi ◽  
Kannan Govindan ◽  
Deepthi Chander ◽  
U. B. Desai ◽  
S. N. Merchant
Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1942
Author(s):  
Rogaia Mhemed ◽  
Frank Comeau ◽  
William Phillips ◽  
Nauman Aslam

Much attention has been focused lately on the Opportunistic Routing technique (OR) that can overcome the restrictions of the harsh underwater environment and the unique structures of the Underwater Sensor Networks (UWSNs). OR enhances the performance of the UWSNs in both packet delivery ratio and energy saving. In our work; we propose a new routing protocol; called Energy Efficient Depth-based Opportunistic Routing with Void Avoidance for UWSNs (EEDOR-VA), to address the void area problem. EEDOR-VA is a reactive OR protocol that uses a hop count discovery procedure to update the hop count of the intermediate nodes between the source and the destination to form forwarding sets. EEDOR-VA forwarding sets can be selected with less or greater depth than the packet holder (i.e., source or intermediate node). It efficiently prevents all void/trapped nodes from being part of the forwarding sets and data transmission procedure; thereby saving network resources and delivering data packets at the lowest possible cost. The results of our extensive simulation study indicate that the EEDOR-VA protocol outperforms other protocols in terms of packet delivery ratio and energy consumption


2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Sheeraz Ahmed ◽  
Nadeem Javaid ◽  
Ashfaq Ahmad ◽  
Imran Ahmed ◽  
Mehr Yahya Durrani ◽  
...  

Reliability is a key factor for application-oriented Underwater Sensor Networks (UWSNs) which are utilized for gaining certain objectives and a demand always exists for efficient data routing mechanisms. Cooperative routing is a promising technique which utilizes the broadcast feature of wireless medium and forwards data with cooperation using sensor nodes as relays. Here, we present a cooperation-based routing protocol for underwater networks to enhance their performance called Stochastic Performance Analysis with Reliability and Cooperation (SPARCO). Cooperative communication is explored in order to design an energy-efficient routing scheme for UWSNs. Each node of the network is assumed to be consisting of a single omnidirectional antenna and multiple nodes cooperatively forward their transmissions taking advantage of spatial diversity to reduce energy consumption. Both multihop and single-hop schemes are exploited which contribute to lowering of path-losses present in the channels connecting nodes and forwarding of data. Simulations demonstrate that SPARCO protocol functions better regarding end-to-end delay, network lifetime, and energy consumption comparative to noncooperative routing protocol—improved Adaptive Mobility of Courier nodes in Threshold-optimized Depth-based routing (iAMCTD). The performance is also compared with three cooperation-based routing protocols for UWSN: Cognitive Cooperation (Cog-Coop), Cooperative Depth-Based Routing (CoDBR), and Cooperative Partner Node Selection Criteria for Cooperative Routing (Coop Re and dth).


2015 ◽  
Vol 74 (9) ◽  
Author(s):  
Nur Asfarina Idrus ◽  
Jiwa Abdullah

The specific characteristic of underwater environment introduces new challenges for the networking protocols. Underwater Wireless Sensor Networks (UWSN) and terrestrial Wireless Sensor Networks (WSN) share some common properties but their differences necessitate specialized new protocols for successful underwater communication. In this paper, a specialized protocol, known as Directional Flooding Routing Protocol is being chosen as the protocol to implement the routing mechanism for underwater sensor networks (UWSNs). The protocol is analyzed and evaluated. Simulation experiments have been carried out to find the suitability of various protocols for the sub aquatic transmission medium, whether in freshwater or seawater. The goal of this paper is to produce simulation results that would illustrate the performances of the protocol for a given metric such as end-to-end delay, packet delivery ratio and energy consumption. By analyzing the simulation results, DFR is considerably reliable for UWSN because this protocol is suitable for the sub aquatic transmission medium such as seawater.   


Sign in / Sign up

Export Citation Format

Share Document