Closed-Form Algebraic Solutions for Angle-of-Arrival Source Localization With Bayesian Priors

2019 ◽  
Vol 18 (8) ◽  
pp. 3827-3842 ◽  
Author(s):  
Ngoc Hung Nguyen ◽  
Kutluyil Dogancay
Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 532
Author(s):  
Henglin Pu ◽  
Chao Cai ◽  
Menglan Hu ◽  
Tianping Deng ◽  
Rong Zheng ◽  
...  

Multiple blind sound source localization is the key technology for a myriad of applications such as robotic navigation and indoor localization. However, existing solutions can only locate a few sound sources simultaneously due to the limitation imposed by the number of microphones in an array. To this end, this paper proposes a novel multiple blind sound source localization algorithms using Source seParation and BeamForming (SPBF). Our algorithm overcomes the limitations of existing solutions and can locate more blind sources than the number of microphones in an array. Specifically, we propose a novel microphone layout, enabling salient multiple source separation while still preserving their arrival time information. After then, we perform source localization via beamforming using each demixed source. Such a design allows minimizing mutual interference from different sound sources, thereby enabling finer AoA estimation. To further enhance localization performance, we design a new spectral weighting function that can enhance the signal-to-noise-ratio, allowing a relatively narrow beam and thus finer angle of arrival estimation. Simulation experiments under typical indoor situations demonstrate a maximum of only 4∘ even under up to 14 sources.


2021 ◽  
Vol 1 (1) ◽  
pp. 13-20
Author(s):  
Tao Bao ◽  
Mohammed Nabil EL KORSO

The co-centered orthogonal loop and dipole (COLD) array exhibits some interesting properties, which makes it ubiquitous in the context of polarized source localization. In the literature, one can find a plethora of estimation schemes adapted to the COLD array. Nevertheless, their ultimate performance in terms the so-called threshold region of mean square error (MSE), have not been fully investigated. In order to fill this lack, we focus, in this paper, on conditional and unconditional bounds that are tighter than the well known Cramér-Rao Bound (CRB). More precisely, we give some closed form expressions of the McAulay-Hofstetter, the Hammersley-Chapman-Robbins, the McAulaySeidman bounds and the recent Todros-Tabrikian bound, for both the conditional and unconditional observation model. Finally, numerical examples are provided to corroborate the theoretical analysis and to reveal a number of insightful properties.


2015 ◽  
Vol 1083 ◽  
pp. 148-154
Author(s):  
Wei Zhou ◽  
Fei Xie ◽  
Yi Fan Zhu ◽  
Qun Li ◽  
Wang Xun Zhang

The feature of deception jamming for GNSS-dot networks is researched and analyzed, and it is difficult to accurately locate and correct the interference position by using the interference detection methods of the traditional WSN, a new attack detection algorithm that based on an improved angle of arrival (AOA) positioning mechanism to determine the point of disruption and interference correction is proposed. Nextly the algorithm of a single interference source localization based on the hyperbolic method by using anti-jamming principle of the GNSS is researched and given, and can locate both single and multiple interference sources. Then the indicators and methods of performance evaluation for the GNSS-dot networks are proposed. Finally, Experiment based on the algorithm is realized, and the attack detection and correction is very efficient, and interference location under ideal conditions is higher efficiency, and the strategies of anti deception jamming are also identified.


Sign in / Sign up

Export Citation Format

Share Document