Development of a 3D Virtual Reality Mobile Navigation System for Geopark

Author(s):  
Ching-Sheng Wang ◽  
Meng-Lung Lin ◽  
Pin-Yu Chen
2012 ◽  
Vol 2012 ◽  
pp. 1-10
Author(s):  
Juraj Machaj ◽  
Peter Brida ◽  
Michal Mlynka

This paper deals with navigation of mobile device in outdoor and indoor environment by only navigation system or application. In the paper, the navigation system is proposed in the light of seamless navigation service. Main parts of the system from positioning point of view are based on GPS and WifiLOC system. WifiLOC is an indoor positioning system based on Wi-Fi technology. The proposal of the system will be described in detail. The system is implemented at the University of Zilina as a pilot, noncommercial project; therefore it is called University Mobile Navigation System (UMNS). The navigation system can be characterized as real-time system, that is, the system operations cannot be significantly delayed. Since delay of the system depends significantly on communication platform used for map information downloading or communication with the localization server. We decided to investigate an impact of the used communication platform on the time needs for some of the functions implemented in navigation system. Measurements were performed in the real-world application. Next experiment is focused on testing of the accuracy of used indoor positioning system. Outdoor positioning accuracy is not tested because GPS is utilized in outdoor, and this system was already exhaustively investigated.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Stephen D Auger ◽  
Peter Zeidman ◽  
Eleanor A Maguire

With experience we become accustomed to the types of environments that we normally encounter as we navigate in the world. But how does this fundamental knowledge develop in the first place and what brain regions are involved? To examine de novo environmental learning, we created an ‘alien’ virtual reality world populated with landmarks of which participants had no prior experience. They learned about this environment by moving within it during functional MRI (fMRI) scanning while we tracked their evolving knowledge. Retrosplenial cortex (RSC) played a central and highly selective role by representing only the most stable, permanent features in this world. Subsequently, increased coupling was noted between RSC and hippocampus, with hippocampus then expressing knowledge of permanent landmark locations and overall environmental layout. Studying how environmental representations emerge from scratch provided a new window into the information processing underpinning the brain's navigation system, highlighting the key influence of the RSC.


Sign in / Sign up

Export Citation Format

Share Document