2012 ◽  
Vol 21 (05) ◽  
pp. 1240020 ◽  
Author(s):  
JIA-WEI ZHANG ◽  
XIA LIU ◽  
JUN DONG

Standard Electrocardiogram (ECG) database is created for validating and comparing different algorithms on feature detection and disease classification. At present, there are four frequently used standard databases: MIT-BIH arrhythmia database, QT database, CSE multi-lead database and AHA database. With the development in equipment and diagnosis approach, severe deficiencies are discovered and a new modern ECG database is needed for further research. So Chinese Cardiovascular Disease Database (CCDD or CCD database), which contains 12-Lead ECG data, detailed annotation features and beat diagnosis result is proposed. It is advanced for not only improving the raw ECG data's technical parameters, but also introducing valuable morphology features which are utilized by experienced cardiologists effectively. CCDD is employed by our group as well as aiming for supporting other research groups that work in automated ECG analysis.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 36955-36967
Author(s):  
Samiul Based Shuvo ◽  
Shams Nafisa Ali ◽  
Soham Irtiza Swapnil ◽  
Mabrook S. Al-Rakhami ◽  
Abdu Gumaei

Author(s):  
Sarah kamil ◽  
Lamia Muhammed

Arrhythmia is a heart condition that occurs due to abnormalities in the heartbeat, which means that the heart's electrical signals do not work properly, resulting in an irregular heartbeat or rhythm and thus defeating the pumping of blood. Some cases of arrhythmia are not considered serious, while others are very dangerous, life-threatening, and cause death in a short period of time. In the clinical routine, cardiac arrhythmia detection is performed by electrocardiogram (ECG) signals. The ECG is a significant diagnosis tool that is used to record the electrical activity of the heart, and its signals can reveal abnormal heart activity. However, because of their small amplitude and duration, visual interpretation of ECG signals is difficult. As a result, we present a significant approach for identifying arrhythmias using ECG signals. In this study, we proposed an approach based on Deep Learning (DL) technology that is a framework of nine-layer one-dimension Conventional Neural Network (1D CNN) for classifying automatically ECG signals into four cardiac conditions named: normal (N), Atrial Premature Beat (APB), Left Bundle Branch Block (LBBB), and Right Bundle Branch Block (RBBB). The practical test of this work was executed with the benchmark MIT-BIH database. We achieved an average accuracy of 99%, precision of 98%, recall of 96.5%, specificity of 99.08%, and an F1-score of 95.75%. The obtained results were compared with some relevant models, and they showed that the proposed framework outperformed those models in some measures. The new approach’s performance indicates its success. Also, it has been shown that deep convolutional neural networks can be used efficiently in automated detection and, therefore, cardiovascular disease protection as well as help cardiologists in medical practice by saving time and effort. Keywords: 1-D CNN, Arrhythmia, Cardiovascular Disease, Classification, Deep learning, Electrocardiogram(ECG), MIT-BIH arrhythmia database.


Sign in / Sign up

Export Citation Format

Share Document