DDS-Based Local Oscillator for Radio Telescope Receiver

Author(s):  
Eugene Alekseev ◽  
Vyacheslav Zakharenko ◽  
Vladislav Budnikov
1991 ◽  
Vol 131 ◽  
pp. 42-46
Author(s):  
G.H. Tan

AbstractThe Westerbork Synthesis Radio Telescope will be equipped with new front ends. These front ends will cover 8 frequency bands in the range from 250 MHz to 8.6 GHz. For the frequency bands above 1.2 GHz the sensitivity of the instrument will be drastically improved. Two independent local oscillator systems make it possible to observe in two frequency bands simultaneously.


2020 ◽  
Vol 643 ◽  
pp. A126
Author(s):  
Laurent Pagani ◽  
David Frayer ◽  
Bruno Pagani ◽  
Charlène Lefèvre

Aims. Radio observing efficiency can be improved by calibrating and reducing the observations in total power mode rather than in frequency, beam, or position-switching modes. Methods. We selected a sample of spectra obtained from the Institut de Radio-Astronomie Millimétrique (IRAM) 30-m telescope and the Green Bank Telescope (GBT) to test the feasibility of the method. Given that modern front-end amplifiers for the GBT and direct Local Oscillator injection for the 30 m telescope provide smooth pass bands that are a few tens of megahertz in width, the spectra from standard observations can be cleaned (baseline removal) separately and then co-added directly when the lines are narrow enough (a few km s−1), instead of performing the traditional ON minus OFF data reduction. This technique works for frequency-switched observations as well as for position- and beam-switched observations when the ON and OFF data are saved separately. Results. The method works best when the lines are narrow enough and not too numerous so that a secure baseline removal can be achieved. A signal-to-noise ratio improvement of a factor of √2 is found in most cases, consistent with theoretical expectations. Conclusions. By keeping the traditional observing mode, the fallback solution of the standard reduction technique is still available in cases of suboptimal baseline behavior, sky instability, or wide lines, and to confirm the line intensities. These techniques of total-power-mode reduction can be applied to any radio telescope with stable baselines as long as they record and deliver the ONs and OFFs separately, as is the case for the GBT.


Author(s):  
Kim Ho Yeap ◽  
Kazuhiro Hirasawa

In radio astronomy, radio telescopes are used to collect radio waves emanated from cosmic sources. By analyzing these signals, the properties of the sources could be unraveled. A telescope typically consists of the following astronomical instruments: a primary and a secondary reflector, receiver optics which usually includes a lens or a pair of mirrors and a pair of feed horns (one for each orthogonal polarization [or simply a corrugated horn with an orthomode transducer OMT]), waveguides, a mixer circuit, a local oscillator, amplifiers, a detector circuit, and a data processing unit. This chapter provides a concise but complete overview of the working principle of the astronomical instruments involved in the construction of a radio telescope. The underlying physics of the components in a radio telescope, ranging from the antenna to the front-end and back-end systems, are illustrated.


1979 ◽  
Vol 44 ◽  
pp. 131-134
Author(s):  
A. Raoult ◽  
P. Lantos ◽  
E. Fürst

The depressions at centimetric and millimetric wavelengths associated with the filaments are studied using already published maps as well as unpublished observations from the Effelsberg 100 m radio telescope of the M.P.I., Bonn. The study has been restricted to large Ha quiescent prominences of relatively simple shape, situated far from the limb and from active regions. The data has been reduced employing one method whose main characteristics are choice of a local quiet sun definition and avoidance of the unstable process of deconvolution.


1987 ◽  
Vol 48 (C7) ◽  
pp. C7-569-C7-571
Author(s):  
A. DELAHAIGUE ◽  
D. COURTOIS ◽  
C. THIEBEAUX ◽  
H. LE CORRE

Sign in / Sign up

Export Citation Format

Share Document