scholarly journals Radio telescope total power mode: improving observation efficiency

2020 ◽  
Vol 643 ◽  
pp. A126
Author(s):  
Laurent Pagani ◽  
David Frayer ◽  
Bruno Pagani ◽  
Charlène Lefèvre

Aims. Radio observing efficiency can be improved by calibrating and reducing the observations in total power mode rather than in frequency, beam, or position-switching modes. Methods. We selected a sample of spectra obtained from the Institut de Radio-Astronomie Millimétrique (IRAM) 30-m telescope and the Green Bank Telescope (GBT) to test the feasibility of the method. Given that modern front-end amplifiers for the GBT and direct Local Oscillator injection for the 30 m telescope provide smooth pass bands that are a few tens of megahertz in width, the spectra from standard observations can be cleaned (baseline removal) separately and then co-added directly when the lines are narrow enough (a few km s−1), instead of performing the traditional ON minus OFF data reduction. This technique works for frequency-switched observations as well as for position- and beam-switched observations when the ON and OFF data are saved separately. Results. The method works best when the lines are narrow enough and not too numerous so that a secure baseline removal can be achieved. A signal-to-noise ratio improvement of a factor of √2 is found in most cases, consistent with theoretical expectations. Conclusions. By keeping the traditional observing mode, the fallback solution of the standard reduction technique is still available in cases of suboptimal baseline behavior, sky instability, or wide lines, and to confirm the line intensities. These techniques of total-power-mode reduction can be applied to any radio telescope with stable baselines as long as they record and deliver the ONs and OFFs separately, as is the case for the GBT.

1991 ◽  
Vol 131 ◽  
pp. 42-46
Author(s):  
G.H. Tan

AbstractThe Westerbork Synthesis Radio Telescope will be equipped with new front ends. These front ends will cover 8 frequency bands in the range from 250 MHz to 8.6 GHz. For the frequency bands above 1.2 GHz the sensitivity of the instrument will be drastically improved. Two independent local oscillator systems make it possible to observe in two frequency bands simultaneously.


Author(s):  
Kim Ho Yeap ◽  
Kazuhiro Hirasawa

In radio astronomy, radio telescopes are used to collect radio waves emanated from cosmic sources. By analyzing these signals, the properties of the sources could be unraveled. A telescope typically consists of the following astronomical instruments: a primary and a secondary reflector, receiver optics which usually includes a lens or a pair of mirrors and a pair of feed horns (one for each orthogonal polarization [or simply a corrugated horn with an orthomode transducer OMT]), waveguides, a mixer circuit, a local oscillator, amplifiers, a detector circuit, and a data processing unit. This chapter provides a concise but complete overview of the working principle of the astronomical instruments involved in the construction of a radio telescope. The underlying physics of the components in a radio telescope, ranging from the antenna to the front-end and back-end systems, are illustrated.


Author(s):  
Eugene Alekseev ◽  
Vyacheslav Zakharenko ◽  
Vladislav Budnikov

2020 ◽  
Vol 24 ◽  
pp. 233121652097034
Author(s):  
Florian Langner ◽  
Andreas Büchner ◽  
Waldo Nogueira

Cochlear implant (CI) sound processing typically uses a front-end automatic gain control (AGC), reducing the acoustic dynamic range (DR) to control the output level and protect the signal processing against large amplitude changes. It can also introduce distortions into the signal and does not allow a direct mapping between acoustic input and electric output. For speech in noise, a reduction in DR can result in lower speech intelligibility due to compressed modulations of speech. This study proposes to implement a CI signal processing scheme consisting of a full acoustic DR with adaptive properties to improve the signal-to-noise ratio and overall speech intelligibility. Measurements based on the Short-Time Objective Intelligibility measure and an electrodogram analysis, as well as behavioral tests in up to 10 CI users, were used to compare performance with a single-channel, dual-loop, front-end AGC and with an adaptive back-end multiband dynamic compensation system (Voice Guard [VG]). Speech intelligibility in quiet and at a +10 dB signal-to-noise ratio was assessed with the Hochmair–Schulz–Moser sentence test. A logatome discrimination task with different consonants was performed in quiet. Speech intelligibility was significantly higher in quiet for VG than for AGC, but intelligibility was similar in noise. Participants obtained significantly better scores with VG than AGC in the logatome discrimination task. The objective measurements predicted significantly better performance estimates for VG. Overall, a dynamic compensation system can outperform a single-stage compression (AGC + linear compression) for speech perception in quiet.


1991 ◽  
Vol 9 (2) ◽  
pp. 266-268
Author(s):  
J. I. Harnett ◽  
U. Klein ◽  
R. Wielebinski ◽  
R. F. Haynes

AbstractWe are studying the distribution and morphology of magnetic fields in southern face-on and edge-on galaxies with the intention of clarifying the distribution, lifetimes and transport mechanisms of cosmic rays, and investigating the intensity and orientation of the disc, halo and poloidal magnetic fields. As a preliminary study, before the Australia Telescope was available, we observed a sample of well-known southern spiral galaxies with the Parkes radio telescope.Here, we present the resulting polarisation images for three galaxies, NGC 253, M 83 and NGC 4945, which were observed at 4.75 GHz and 8.55 GHz. The corresponding total power contour plots have been already published by Harnett et al. (1989a, 1990).


2003 ◽  
Vol 90 (1) ◽  
pp. 333-341 ◽  
Author(s):  
Weili Bao ◽  
Jian-Young Wu

Neocortical “theta” oscillation (5–12 Hz) has been observed in animals and human subjects but little is known about how the oscillation is organized in the cortical intrinsic networks. Here we use voltage-sensitive dye and optical imaging to study a carbachol/bicuculline induced theta (∼8 Hz) oscillation in rat neocortical slices. The imaging has large signal-to-noise ratio, allowing us to map the phase distribution over the neocortical tissue during the oscillation. The oscillation was organized as spontaneous epochs and each epoch was composed of a “first spike,” a “regular” period (with relatively stable frequency and amplitude), and an “irregular” period (with variable frequency and amplitude) of oscillations. During each cycle of the regular oscillation, one wave of activation propagated horizontally (parallel to the cortical lamina) across the cortical section at a velocity of ∼50 mm/s. Vertically the activity was synchronized through all cortical layers. This pattern of one propagating wave associated with one oscillation cycle was seen during all the regular cycles. The oscillation frequency varied noticeably at two neighboring horizontal locations (330 μm apart), suggesting that the oscillation is locally organized and each local oscillator is about ≤300 μm wide horizontally. During irregular oscillations, the spatiotemporal patterns were complex and sometimes the vertical synchronization decomposed, suggesting a de-coupling among local oscillators. Our data suggested that neocortical theta oscillation is sustained by multiple local oscillators. The coupling regime among the oscillators may determine the spatiotemporal pattern and switching between propagating waves and irregular patterns.


2021 ◽  
Vol 645 ◽  
pp. A37
Author(s):  
F. Tercero ◽  
J. A. López-Pérez ◽  
J. D. Gallego ◽  
F. Beltrán ◽  
O. García ◽  
...  

Context. Yebes 40 m radio telescope is the main and largest observing instrument at Yebes Observatory and is devoted to very long baseline interferometry (VLBI) and single-dish observations since 2010. It has been covering frequency bands between 2 GHz and 90 GHz in discontinuous and narrow windows in most cases in order to match the current needs of the European VLBI Network (EVN) and the Global Millimeter VLBI Array (GMVA). Aims. The Nanocosmos project, a European Union-funded synergy grant, has enabled an increase in the instantaneous frequency coverage of the Yebes 40 m radio telescope, making it possible to observe many molecular transitions with single tunings in single-dish mode. This reduces the observing time and maximises the output from the telescope. Methods. We present technical specifications of the recently installed 31.5−50 GHz (Q band) and 72−90.5 GHz (W band) receivers along with the main characteristics of the telescope at these frequency ranges. We observed IRC+10216, CRL 2688, and CRL 618, which harbour a rich molecular chemistry, to demonstrate the capabilities of the new instrumentation for spectral observations in single-dish mode. Results. Our results show the high sensitivity of the telescope in the Q band. The spectrum of IRC+10126 offers an unprecedented signal-to-noise ratio for this source in this band. On the other hand, the spectrum normalised by the continuum flux towards CRL 618 in the W band demonstrates that the 40 m radio telescope produces comparable results to those from the IRAM 30 m radio telescope, although with a lower sensitivity. The new receivers fulfil one of the main goals of Nanocosmos and open up the possibility to study the spectrum of different astrophysical media with unprecedented sensitivity.


Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 512
Author(s):  
Binghui Lin ◽  
Mohamed Atef ◽  
Guoxing Wang

A low-power, high-gain, and low-noise analog front-end (AFE) for wearable photoplethysmography (PPG) acquisition systems is designed and fabricated in a 0.35 μm CMOS process. A high transimpedance gain of 142 dBΩ and a low input-referred noise of only 64.2 pArms was achieved. A Sub-Hz filter was integrated using a pseudo resistor, resulting in a small silicon area. To mitigate the saturation problem caused by background light (BGL), a BGL cancellation loop and a new simple automatic gain control block are used to enhance the dynamic range and improve the linearity of the AFE. The measurement results show that a DC photocurrent component up-to-10 μA can be rejected and the PPG output swing can reach 1.42 Vpp at THD < 1%. The chip consumes a total power of 14.85 μW using a single 3.3-V power supply. In this work, the small area and efficiently integrated blocks were used to implement the PPG AFE and the silicon area is minimized to 0.8 mm × 0.8 mm.


Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3610
Author(s):  
Adrián J. Torregrosa ◽  
Emir Karamehmedović ◽  
Haroldo Maestre ◽  
María Luisa Rico ◽  
Juan Capmany

Up-conversion sensing based on optical heterodyning of an IR (infrared) image with a local oscillator laser wave in a nonlinear optical sum-frequency mixing (SFM) process is a practical solution to circumvent some limitations of IR image sensors in terms of signal-to-noise ratio, speed, resolution, or cooling needs in some demanding applications. In this way, the spectral content of an IR image can become spectrally shifted to the visible/near infrared (VIS/NWIR) and then detected with silicon focal plane arrayed sensors (Si-FPA), such as CCD/CMOS (charge-coupled and complementary metal-oxide-semiconductor devices). This work is an extension of a previous study where we recently introduced this technique in the context of optical communications, in particular in FSOC (free-space optical communications). Herein, we present an image up-conversion system based on a 1064 nm Nd3+: YVO4 solid-state laser with a KTP (potassium titanyl phosphate) nonlinear crystal located intra-cavity where a laser beam at 1550 nm 2D spatially-modulated with a binary Quick Response (QR) code is mixed, giving an up-converted code image at 631 nm that is detected with an Si-based camera. The underlying technology allows for the extension of other IR spectral allocations, construction of compact receivers at low cost, and provides a natural way for increased protection against eavesdropping.


1991 ◽  
Vol 131 ◽  
pp. 260-263
Author(s):  
Juan M. Uson ◽  
T. J. Cornwell

AbstractWe have performed an observational test of the “Homogeneous Array” concept utilized in the MMA design, whereby the array elements are used in total power mode to provide the shortest spacings. Using the VLA in interferometric mode and a VLBA element measuring total power, we have reconstructed a mosaic image of the Crab Nebula, which fits the data adequately and is of good visual appearance.


Sign in / Sign up

Export Citation Format

Share Document