Effects of UV irradiation on textured silicone rubber material

Author(s):  
A. Nekeb ◽  
A. Haddad ◽  
N. Harid ◽  
H. Griffiths ◽  
R. Waters
Author(s):  
Deepak D. ◽  
Nitesh Kumar ◽  
Shreyas P. Shetty ◽  
Saurabh Jain ◽  
Manoj Bhat

The expensive nature of currently used materials in the soft robotic industry demands the consideration of alternative materials for fabrication. This work investigates the performance of RTV-2 grade silicone rubber for fabrication of a soft actuator. Initially, a cylindrical actuator is fabricated using this material and its performance is experimentally assessed for different pressures. Further, parametric variations of the effect of wall thickness and inflation pressure are studied by numerical methods. Results show that, both wall thickness and inflation pressure are influential parameters which affect the elongation behaviour of the actuator. Thin (1.5 mm) sectioned actuators produced 76.97% more elongation compared to thick sectioned, but the stress induced is 89.61 % higher. Whereas, the thick sectioned actuator (6 mm) showed a higher load transmitting capability. With change in wall thickness from 1.5 mm to 6 mm, the elongation is reduced by 76.97 %, 38.35 %, 21.05 % and 11.43 % at pressure 100 kPa, 75 kPa, 50 kPa and 25 kPa respectively. The induced stress is also found reduced by 89.61 %, 86.66 %, 84.46 % and 68.68 % at these pressures. The average load carrying capacity of the actuator is found to be directly proportional to its wall thickness and inflation pressure.


2016 ◽  
Vol 51 (16) ◽  
pp. 2253-2262 ◽  
Author(s):  
Betiana Felice ◽  
Vera Seitz ◽  
Maximilian Bach ◽  
Christin Rapp ◽  
Erich Wintermantel

Control and reduction of microorganism infections in high-risk environments is up to date a challenge. Traditional techniques imply several limitations including development of antibiotics resistance and ecotoxicity. Then, polymers functionalized with photocatalyts arise as a promising solution against a broad spectrum of microorganisms found at, e.g. sanitary, food, and medical environments. Here, we present silicone rubber–TiO2 composites as novel antibacterial polymers. Four different types of composites with different TiO2 contents were produced and analyzed under UV irradiation and dark conditions in terms of particle distribution, chemical composition, photocatalytic activity, wettability, and antibacterial efficacy against Escherichia coli. Under UV irradiation, antibacterial sensitivity assay showed a 1000 times reduction of colony forming units after 2 h of light exposure so that the antibacterial ability of silicone–TiO2 composites was proved. Photocatalytic activity assessment suggested that reactive oxygen species induced by photocatalytic reaction at TiO2 particles are the main cause of the observed antibacterial effect. Scanning electron microscopy indicated no topographical damage after UV exposure. In addition, chemical analysis through Raman and X-Ray photoelectron spectroscopies demonstrated the stability of the silicone matrix under UV irradiation. Hence, the current work presents silicone–TiO2 composites as stable nonspecific antibacterial polymers for prevention of infections at multiple high-risk environments.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1087 ◽  
Author(s):  
Ping Chen ◽  
Xilin Wang ◽  
Xun Li ◽  
Qishen Lyu ◽  
Naixiao Wang ◽  
...  

Silicone rubber material is widely used in high-voltage external insulation systems due to its excellent hydrophobicity and hydrophobicity transfer performance. However, silicone rubber is a polymeric material with a poor ability to resist electrical tracking and erosion; therefore, some fillers must be added to the material for performance enhancement. The inclined plane test is a standard method used for evaluating the tracking and erosion resistance by subjecting the materials to a combination of voltage stress and contaminate droplets to produce failure. This test is time-consuming and difficult to apply in field inspection. In this paper, a new and faster way to evaluate the tracking and erosion resistance performance is proposed using laser-induced breakdown spectroscopy (LIBS). The influence of filler content on the tracking and erosion resistance performance was studied, and the filler content was characterized by thermogravimetric analysis and the LIBS technique. In this paper, the tracking and erosion resistance of silicone rubber samples was correctly classified using principal component analysis (PCA) and neural network algorithms based on LIBS spectra. The conclusions of this work are of great significance to the performance characterization of silicone rubber composite materials.


Author(s):  
Zhicheng Guan ◽  
Kang Niu ◽  
Gongmao Peng ◽  
Fuzeng Zhang ◽  
Liming Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document