An Optimal Strategy for Three-Phase Intelligent Auto-Reclosing of Power Lines with Shunt Reactors

Author(s):  
Nikolay Ivanov ◽  
Vladislav Antonov ◽  
Alexander Soldatov ◽  
Marina Aleksandrova ◽  
Evgeny Vorobyev
2014 ◽  
Vol 698 ◽  
pp. 694-698 ◽  
Author(s):  
Dmitry I. Bliznyuk ◽  
Pavel Y. Bannykh ◽  
Alexandra I. Khalyasmaa

The paper is devoted to the problem of power flow calculation and steady state analysis methods adaptation for four-phase electrical grids. These methods are based on developed models of four-phase power lines and phase convering transformers. The basis of research is nodal voltages equations for three-phase, four-phase and mixed (combined by three-and four-phase elements) grids. Algorithm of four-phfase elements parameters automized adaptation for power flow calculation model of "RastrWin" software have been developed.


2021 ◽  
Vol 194 ◽  
pp. 107058
Author(s):  
Yun Geng ◽  
Jinlong Dong ◽  
Xinggui Chen ◽  
Luyang Zhang ◽  
Jing Yan ◽  
...  

Author(s):  
Tohru Watanabe ◽  
Yukishige Fujita ◽  
Mikio Totani

A new inverter-AC motor system having four power source lines, which can control each coil current independently, is compared to an ordinary inverter-AC motor system using a Y-type coil connection and three power lines. In this paper, three-phase rectangular-type currents are generated by the inverter made of simple ICs. In a previous paper[1], similar comparison experiments were executed using a high-speed DSP board. The board can calculate the three-phase currents to generate a rotating, resultant, magnetic flux with a precise constant strength and phase. It was verified by experiments that an energy consumption of 15% can be saved by using the proposed independent, motor-coil currents. However, it requires high speed and high cost DSP or CPU. In this paper, it is verified by using a new inverter-AC motor system that an energy consumption of 15% can be saved, and also the maximum torque increases 10%.


2020 ◽  
Vol 178 ◽  
pp. 01053
Author(s):  
A.V. Vinogradov ◽  
A.V. Bukreev ◽  
V.E. Bolshev ◽  
A.V. Vinogradova ◽  
M.O. Ward ◽  
...  

The article presents portable timers-electricity meters (PTEM) which are devices for examining 0.4 kV power lines. There are two developed several versions of the devices: single-phase PTEM used to examine single-phase branch lines to consumers, and three-phase PTEM used for any power line sections. Also, the method to identify sections of power lines with increased electricity losses by means of these devices is presented. The paper considers the application of the three-phase PTEM with Wi-Fi technology to transmit data. Up to six independent three-phase PTEMs with Wi-Fi technology can be installed at different points of the power transmission line and transmit measured data in real time to the central unit. The use of these devices allows determining both technological and commercial losses of electricity in different power line sections and draw conclusions about whether these losses are overestimated. On the basis of this, measures are taken to reduce losses.


2019 ◽  
Vol 139 ◽  
pp. 01054 ◽  
Author(s):  
M.I. Ibadullaev ◽  
A.N. Tovbaev ◽  
A.Zh. Esenbekov

It is known that the occurrence and existence of autoparametric oscillations (AIC) at the subharmonic frequency (GHC) in power lines (power lines) and in power supply systems is extremely undesirable, since they cause ferroresonant overvoltages at different frequencies. At the same time, there is an extensive class of nonlinear electric circuits in which the excitation of the AIC at the frequency of the SGC forms the basis of frequency-converting devices serving as secondary power sources. It is shown that single-phase-three-phase nonlinear systems are, to one degree or another, equivalent circuits of power lines, the main elements of which are: longitudinal compensation capacitors, transverse compensation reactors, and transformers with non-linear characteristics. The regularities of the excitation of the GCC at the frequency (ω / 3) of the power lines were studied, theoretical and experimental studies of the equivalent model of single-phase-three-phase circuits with nonlinear inductance were carried out. For a theoretical analysis of the steady-state mode of SGK at a frequency (ω / 3) with inductive coupling, the frequency- energy approach is used. The conditions of existence and critical parameters of the circuit are determined, and the mechanism of the appearance of the SGC at the frequency (ω / 3) is also studied.


2021 ◽  
Vol 2021 (1) ◽  
pp. 53-56
Author(s):  
Yu.I. Tuhay ◽  
◽  
V.V. Kuchansky ◽  
I.Yu. Tuhay ◽  
◽  
...  

It is shown that the use of controlled shunt reactors allows you to create FACTS-controlled power lines based on extra-high voltage power lines that meet the necessary requirements of modern energy systems to control normal conditions. The typical modes of operation of an ultra-high voltage power line with installed controlled shunt reactors are analyzed. The efficiency of using controlled shunt reactors to increase the reliability of single-phase auto-reclosing is shown. The issues of the appearance of an aperiodic component in the current when disconnecting the line of SF6 circuit breakers are considered. It is shown that the presence of a ferromagnetic core in controlled shunt reactors causes the appearance of transition resonance, which must be taken into account when designing the FACTS. References 10, figures 1, tables 1.


Sign in / Sign up

Export Citation Format

Share Document