Wireless sensors in reverberant enclosures: characterizing a new radio channel

Author(s):  
J.P. Van't Hof ◽  
D.D. Stancil
Author(s):  
О.Г. ПОНОМАРЕВ ◽  
М. АСАФ

Рассмотрена проблема коррекции искажений OFDM-сигнала, вызванных смещением частоты дискретизации сигнала в приемном и передающем устройствах системы сотовой связи пятого поколения. Предлагаемый метод компенсации смещения частоты дискретизации основывается на прямой коррекции искажений, вносимых в передаваемый сигнал наличием смещения, и не предполагает какой-либо оценки величины смещения. Метод предназначен для коррекции сигналов в восходящем канале системы сотовой связи пятого поколения и основывается на использовании референсных сигналов, рекомендованных стандартами 3GPP. Результаты численного моделирования показали, что использование предлагаемого метода позволяет повысить эффективность передачи данных по многолучевому радиоканалу более чем на 15% в широком диапазоне значений отношения сигнал/шум. 5G-NR, CP-OFDM, synchronization, sample clock offset, PUSCH. О The paper investigates the issue of sampling clock offset ( SCO) in the fifth generation new radio systems. Due to the imperfect SCO estimation methods, the correction methods relying on the SCO estimation are not perfect, so the proposed method directly corrects the effect of SCO without using any kind of estimation method. Our method is designed to correct the signals in the physical uplink shared channel (PUSCH). The method uses reference signals as recommended by the 3rd generation partnership project (3GPP) standards. The results of the numerical simulation show that the use of the proposed method increases the efficiency of data transmission over the multipath radio channel by more than 15% in a wide range of signal-to-noise ratio values.


Author(s):  
Lei Tang ◽  
Kuang-Ching Wang ◽  
Yong Huang ◽  
Fangming Gu

Wireless sensors are envisioned to be useful for plant floor process monitoring with unprecedented flexibility and low costs, where data can be relayed via a wireless network formed among the sensors. Factory environments, however, are known harsh for radio communications. For sensor radios engineered with extremely low power and simple circuitry, the sensor radio channel characteristics must be identified for optimal network design and reliability assessment. In this paper, a preliminary radio channel measurement study was performed based on the wireless sensor pairs in normal communication at the 2.4 GHz Industrial, Scientific and Medical (ISM) band to assess the sensor radio channel properties in a university machine workshop. The effect of both stationary and moving (forklift) obstacles on the radio propagation in terms of the received signal power, bit error and packet error rates was studied. The effect of stationary obstacles was further analyzed against a simple path loss model to find the path loss exponent. A spectrum analyzer was also used to capture the noise backgrounds in free space and the machine shop, which shows significantly different radio activities among the investigated scenarios. The proposed channel measurement methodology through directly utilizing the sensor platforms will help future radio channel characterization studies in manufacturing plant floor environments.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Longhe Wang ◽  
Bo Ai ◽  
Jingya Yang ◽  
Hao Qiu ◽  
Wanqiao Wang ◽  
...  

With the development of the vehicular network, new radio technologies have been in the spotlight for maximizing the utilization of the limited radio spectrum resource while accommodating the increasing amount of services and applications in the wireless mobile networks. New spectrum policies based on dynamic spectrum access technology such as flexible access common spectrum (FACS) have been adopted by the Korea Communications Commission (KCC). 23 GHz bands have been allocated to FACS bands by the KCC, which is expected extensively for vehicular communications. The comprehensive knowledge on the radio channel is essential to effectively support the design, simulation, and development of such radio technologies. In this paper, the characteristics of 23 GHz vehicle-to-infrastructure (V2I) channels are simulated and extracted for the urban environment in Seoul. The path loss, shadow factor, Ricean K-factor, root-mean-square (RMS) delay spread, and angular spreads are characterized from the calibrated ray-tracing simulation results, and it can help researchers have a better understanding of the propagation channel for designing vehicular radio technologies and a communication system in a similar environment.


Sign in / Sign up

Export Citation Format

Share Document