shared channel
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 26)

H-INDEX

10
(FIVE YEARS 2)

2022 ◽  
Author(s):  
C. Seida ◽  
A. El Allati ◽  
N. Metwally ◽  
Y. Hassouni

Abstract In this suggested version of the bidirectional teleportation protocol, it is assumed that the used quantum channel passes through an amplitude damping channel. Therefore, some of its quantum correlations (entanglement) are lost and, consequently, its efficiency to implement this protocol decreases. The weak and the reversal measurements are used to recover the losses of these correlations, where the negativity, as a measure of entanglement is improved. In this context, we discussed the effect of the noisy strength on the fidelities of the bidirectional teleported states between the users. It is shown that, by applying the weak and the reversal measurements (WRM) on the initial quantum channel between the users, the fidelities of the teleported states are improved. Moreover, we showed that, the upper bounds of the teleported states depend on the initial states of the triggers and the strengths of WRM. It is worth noting that the WRM improves the quantum correlations of the shared channel and, hence, the fidelity of the teleported state if the initial fidelity of the teleported state is larger than 0.5


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7948
Author(s):  
Ya-Ju Yu ◽  
Yu-Hsiang Huang ◽  
Yuan-Yao Shih

Before each user equipment (UE) can send data using the narrowband physical uplink shared channel (NPUSCH), each UE should periodically monitor a search space in the narrowband physical downlink control channel (NPDCCH) to decode a downlink control indicator (DCI) over narrowband Internet of Things (NB-IoT). This monitoring period, called the NPDCCH period in NB-IoT, can be flexibly adjusted for UEs with different channel qualities. However, because low-cost NB-IoT UEs operate in the half-duplex mode, they cannot monitor search spaces in NPDCCHs and transmit data in the NPUSCH simultaneously. Thus, as we observed, a percentage of uplink subframes will be wasted when UEs monitor search spaces in NPDCCHs, and the wasted percentage is higher when the monitored period is shorter. In this paper, to address this issue, we formulate the cross-cycled resource allocation problem to reduce the consumed subframes while satisfying the uplink data requirement of each UE. We then propose a cross-cycled uplink resource allocation algorithm to efficiently use the originally unusable NPUSCH subframes to increase resource utilization. Compared with the two resource allocation algorithms, the simulation results verify our motivation of using the cross-cycled radio resources to achieve massive connections over NB-IoT, especially for UEs with high channel qualities. The results also showcase the efficiency of the proposed algorithm, which can be flexibly applied for more different NPDCCH periods.


2021 ◽  
Author(s):  
Lei Yang ◽  
Xiaojie Li ◽  
Yuanqi Zhang ◽  
Baoxiang Feng ◽  
Jiale Jian ◽  
...  

2021 ◽  
Vol 22 (21) ◽  
pp. 11750
Author(s):  
Nickie Safarian ◽  
Sarah Houshangi-Tabrizi ◽  
Christiane Zoidl ◽  
Georg R. Zoidl

Pannexin1 (Panx1) can form ATP-permeable channels that play roles in the physiology of the visual system. In the zebrafish two ohnologs of Panx1, Panx1a and Panx1b, have unique and shared channel properties and tissue expression patterns. Panx1a channels are located in horizontal cells of the outer retina and modulate light decrement detection through an ATP/pH-dependent mechanisms and adenosine/dopamine signaling. Here, we decipher how the strategic localization of Panx1b channels in the inner retina and ganglion cell layer modulates visually evoked motor behavior. We describe a panx1b knockout model generated by TALEN technology. The RNA-seq analysis of 6 days post-fertilization larvae is confirmed by real-time PCR and paired with testing of locomotion behaviors by visual motor and optomotor response tests. We show that the loss of Panx1b channels disrupts the retinal response to an abrupt loss of illumination and it decreases the larval ability to follow leftward direction of locomotion in low light conditions. We concluded that the loss of Panx1b channels compromises the final output of luminance as well as motion detection. The Panx1b protein also emerges as a modulator of the circadian clock system. The disruption of the circadian clock system in mutants suggests that Panx1b could participate in non-image forming processes in the inner retina.


Author(s):  
О.Г. ПОНОМАРЕВ ◽  
М. АСАФ

Рассмотрена проблема коррекции искажений OFDM-сигнала, вызванных смещением частоты дискретизации сигнала в приемном и передающем устройствах системы сотовой связи пятого поколения. Предлагаемый метод компенсации смещения частоты дискретизации основывается на прямой коррекции искажений, вносимых в передаваемый сигнал наличием смещения, и не предполагает какой-либо оценки величины смещения. Метод предназначен для коррекции сигналов в восходящем канале системы сотовой связи пятого поколения и основывается на использовании референсных сигналов, рекомендованных стандартами 3GPP. Результаты численного моделирования показали, что использование предлагаемого метода позволяет повысить эффективность передачи данных по многолучевому радиоканалу более чем на 15% в широком диапазоне значений отношения сигнал/шум. 5G-NR, CP-OFDM, synchronization, sample clock offset, PUSCH. О The paper investigates the issue of sampling clock offset ( SCO) in the fifth generation new radio systems. Due to the imperfect SCO estimation methods, the correction methods relying on the SCO estimation are not perfect, so the proposed method directly corrects the effect of SCO without using any kind of estimation method. Our method is designed to correct the signals in the physical uplink shared channel (PUSCH). The method uses reference signals as recommended by the 3rd generation partnership project (3GPP) standards. The results of the numerical simulation show that the use of the proposed method increases the efficiency of data transmission over the multipath radio channel by more than 15% in a wide range of signal-to-noise ratio values.


2021 ◽  
Author(s):  
Shin-Hwan Kim ◽  
Kyung-Yup Kim ◽  
Jae-Hyung Koo ◽  
Young-Soo Seo

The issue of cell-to-cell interferences is a serious problem that has always been raised in digital communication system such as NR. The communication method of NR and LTE is OFDM. OFDM has many advantages, but has fatal disadvantage called ICI (Inter-Cell Interference) because resources among cells are always overlapped. For example, NR’s typical interferences are ICIs among PDSCH (Physical Downlink Shared Channel), PDCCH (Physical Downlink Control Channel), PUSCH (Physical Uplink Shared Channel), PUCCH (Physical Uplink Control Channel), CSI-RS (Channel State Information-Reference Signal) and SRS (Sounding Reference Signal). Among them, it is important to determine the correct beamforming weight factor value by estimating the channel with SRS. Therefore, the ICI of SRS degrades the performance of downlink throughput. This paper analyses the impact of SRS’s ICI in conventional scheme, introduces the proposed AC-CS (Auto-Correlation Cyclic Shift) schemes by the Zadoff-Chu sequence to overcome the ICI of SRS and analyses theirs performance. The method used for performance analysis is determined by the detection abilities, which are missing probability and false alarm probability.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4918
Author(s):  
Jie Wu ◽  
Weihao Kong ◽  
Pengfei Gao ◽  
Nan Jin ◽  
Jitao Zhang ◽  
...  

Communication between the primary and secondary sides is pivotal to the wireless power transfer (WPT) system. The system control commands and feedback information need simultaneous wireless information and power transfer (SWIPT). In this paper, a FSK-based SWIPT system with full-duplex communication via a shared channel is provided. Considering the complexity of the coupling relationship in this kind of full-duplex SWIPT system, this paper proposes an analysis method based on the transmission channel, studies the crosstalk between the power channel and the information channel, and between the forward and reverse transfer of information. A design method of full-duplex communication SWIPT system based on shared coupling channels is provided. A 60 W SWIPT prototype with a full-duplex communication rate of 20 kbps is built to verify the proposed method.


Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 570
Author(s):  
Randy Verdecia-Peña ◽  
José I. Alonso

The relaying technologies in co-operative systems are considered a core element in actual and future wireless communications, assisting the network by enhancing its reliability and improving its capability through exploiting co-operativity. In this paper, a co-operative system testbed based on Software Defined Radio (SDR) through Universal Software Radio Peripherals (USRPs) and the MATLABTM software is presented. The main novelty in this development of the platform is the implementation of 4G signal features, such as Physical Downlink Shared Channel (PDSCH) and Downlink Shared Channel (DL-SCH) for transport channel coding, which is one of the main contribution of the paper. The developed SDR Multi-Input and Multi-Output (MIMO) co-operative platform is capable of developing prototypes for the Relay Nodes (RNs). More specifically, the Amplify-&-Forward (A&F)—with or without Zero Forcing (ZF) and Mean Maximum Square Error (MMSE) Pre-Equalization—and Decode-&-Forward (D&F) protocols were implemented. Both Single-Input and Single-Output (SISO) and MIMO modes are supported by our testbed. The developed A&F and D&F MIMO co-operative systems in this paper utilize Orthogonal Space-Frequency Block Codes (OSFBCs) for the transmission of data symbols from the source to the destination. Our results show that RNs can substantially improve the Bit Error Rate (BER) and throughput in communications between the eNodeB and User Equipment (UE). In particular, the maximum throughput achieved by conventional MIMO A&F is 9.3Mbps at Signal-to-NoiseRatio(SNR)=16dB, which is 4Mbps higher than throughput of MIMO Non-Co-operative. It also shows the capacity improvement when considering the pre-equalization in the A&F schemes, compared to the conventional A&F RN. For example, with MIMO A&F-MMSE pattern, a value os 11.8 Mbps is achieved for SNR=16dB, which is 84.8% of the maximum system throughput (13.95 Mbps). On the other hand, the obtained results with D&F schemes far exceed those obtained with A&F strategies, achieving the maximum performance with the 2×2 MIMO D&F protocol from SNR=8dB.Furthermore, this work constitutes a first stage to the implementation of a 5G New-Radio Co-operative System platform.


Sign in / Sign up

Export Citation Format

Share Document