scholarly journals Joint Time-Frequency Domain Proportional Fair Scheduler with HARQ for 3GPP LTE Systems

Author(s):  
Kian Chung Beh ◽  
Simon Armour ◽  
Angela Doufexi
Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3394
Author(s):  
Le Minh Tuan ◽  
Le Hoang Son ◽  
Hoang Viet Long ◽  
L. Rajaretnam Priya ◽  
K. Ruba Soundar ◽  
...  

One of the crucial problems in Industry 4.0 is how to strengthen the performance of mobile communication within mobile ad-hoc networks (MANETs) and mobile computational grids (MCGs). In communication, Industry 4.0 needs dynamic network connectivity with higher amounts of speed and bandwidth. In order to support multiple users for video calling or conferencing with high-speed transmission rates and low packet loss, 4G technology was introduced by the 3G Partnership Program (3GPP). 4G LTE is a type of 4G technology in which LTE stands for Long Term Evolution, followed to achieve 4G speeds. 4G LTE supports multiple users for downlink with higher-order modulation up to 64 quadrature amplitude modulation (QAM). With wide coverage, high reliability and large capacity, LTE networks are widely used in Industry 4.0. However, there are many kinds of equipment with different quality of service (QoS) requirements. In the existing LTE scheduling methods, the scheduler in frequency domain packet scheduling exploits the spatial, frequency, and multi-user diversity to achieve larger MIMO for the required QoS level. On the contrary, time-frequency LTE scheduling pays attention to temporal and utility fairness. It is desirable to have a new solution that combines both the time and frequency domains for real-time applications with fairness among users. In this paper, we propose a channel-aware Integrated Time and Frequency-based Downlink LTE Scheduling (ITFDS) algorithm, which is suitable for both real-time and non-real-time applications. Firstly, it calculates the channel capacity and quality using the channel quality indicator (CQI). Additionally, data broadcasting is maintained by using the dynamic class-based establishment (DCE). In the time domain, we calculate the queue length before transmitting the next packets. In the frequency domain, we use the largest weight delay first (LWDF) scheduling algorithm to allocate resources to all users. All the allocations would be taken placed in the same transmission time interval (TTI). The new method is compared against the largest weighted delay first (LWDF), proportional fair (PF), maximum throughput (MT), and exponential/proportional fair (EXP/PF) methods. Experimental results show that the performance improves by around 12% compared with those other algorithms.


Author(s):  
Wentao Xie ◽  
Qian Zhang ◽  
Jin Zhang

Smart eyewear (e.g., AR glasses) is considered to be the next big breakthrough for wearable devices. The interaction of state-of-the-art smart eyewear mostly relies on the touchpad which is obtrusive and not user-friendly. In this work, we propose a novel acoustic-based upper facial action (UFA) recognition system that serves as a hands-free interaction mechanism for smart eyewear. The proposed system is a glass-mounted acoustic sensing system with several pairs of commercial speakers and microphones to sense UFAs. There are two main challenges in designing the system. The first challenge is that the system is in a severe multipath environment and the received signal could have large attenuation due to the frequency-selective fading which will degrade the system's performance. To overcome this challenge, we design an Orthogonal Frequency Division Multiplexing (OFDM)-based channel state information (CSI) estimation scheme that is able to measure the phase changes caused by a facial action while mitigating the frequency-selective fading. The second challenge is that because the skin deformation caused by a facial action is tiny, the received signal has very small variations. Thus, it is hard to derive useful information directly from the received signal. To resolve this challenge, we apply a time-frequency analysis to derive the time-frequency domain signal from the CSI. We show that the derived time-frequency domain signal contains distinct patterns for different UFAs. Furthermore, we design a Convolutional Neural Network (CNN) to extract high-level features from the time-frequency patterns and classify the features into six UFAs, namely, cheek-raiser, brow-raiser, brow-lower, wink, blink and neutral. We evaluate the performance of our system through experiments on data collected from 26 subjects. The experimental result shows that our system can recognize the six UFAs with an average F1-score of 0.92.


Sign in / Sign up

Export Citation Format

Share Document