proportional fair
Recently Published Documents


TOTAL DOCUMENTS

366
(FIVE YEARS 37)

H-INDEX

29
(FIVE YEARS 3)

Author(s):  
Basil Ezeribe

Abstract: Network providers of LTE networks can achieve maximum gain and Quality of Service (QoS) requirement of their users by employing a radio resource management technique that has the ability to allocate resource blocks to users in a fair manner without compromising the capacity of the network. This implies that for a better performing LTE network, a fair scheduling and balanced QoS delivery for various forms of traffic are needed. In this paper an improved proportional fair scheduling algorithm for downlink LTE cellular network has been developed. This algorithm was implemented using a MATLAB-based System Level simulator by Vienna University. The developed algorithm was compared to other scheduling algorithms such as the Proportional Fair (PF) algorithm, Best Channel Quality Indicator (CQI), and Round Robin (RR) scheduling methods. The system performance was also analyzed under different scenarios using different performance metrics. The achieved results showed that the developed algorithm had a better throughput performance than the Round Robin and Proportional fair scheduling. The developed algorithm shows improved cell edge throughputs of about 19.2% (as at 20 users) and 9.1% higher for cell edge users without and with mobility impact respectively. The Best CQI algorithm had higher peak throughput values but the fairness was highly compromised. The developed algorithm outperforms the Best CQI by 136.6% without the impact of mobility. Finally, in dense conditions, the developed algorithm still outperforms the other algorithms with a QoS metric of 4.6% increment when compared to the PF algorithm which was the closest competitor. Keywords: UE, eNodeB, Scheduling, Proportional Fair, LTE,


Author(s):  
Asmae Mamane ◽  
M. Fattah ◽  
M. El Ghazi ◽  
Y. Balboul ◽  
M. El Bekkali ◽  
...  

The impending next generation of mobile communications denoted 5G intends to interconnect user equipment, things, vehicles, and cities. It will provide an order of magnitude improvement in performance and network efficiency, and different combinations of use cases enhanced mobile broadband (eMBB), ultra reliable low latency communications (URLLC), massive internet of things (mIoT) with new capabilities and diverse requirements. Adoption of advanced radio resource management procedures such as packet scheduling algorithms is necessary to distribute radio resources among different users efficiently. The proportional fair (PF) scheduling algorithm and its modified versions have proved to be the commonly used scheduling algorithms for their ability to provide a tradeoff between throughput and fairness. In this article, the buffer status is combined with the PF metric to suggest a new scheduling algorithm for efficient support for eMBB. The effectiveness of the proposed scheduling strategy is proved through à comprehensive experimental analysis based on the evaluation of different quality of service key performance indicators (QoS KPIs) such as throughput, fairness, and buffer status.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Bamidele Moses Kuboye

The advancement in cellular communications has enhanced the special attention given to the study of resource allocation schemes. This study is to enhance communications to attain efficiency and thereby offers fairness to all users in the face of congestion experienced anytime a new product is rolled out. The comparative analysis was done on the performance of Enhanced Proportional Fair, Qos-Aware Proportional Fair and Logarithmic rule scheduling algorithms in Long Term Evolution in this work. These algorithms were simulated using LTE system toolbox in MATLAB and their performances were compared using Throughput, Packet delay and Packet Loss Ratio. The results showed Qos-Aware Proportional Fair has a better performance in all the metrics used for the evaluation.


Author(s):  
Shaochuan Wu ◽  
Yuming Wei ◽  
Shuo Zhang ◽  
Weixiao Meng

Author(s):  
Yan Huang ◽  
Shaoran Li ◽  
Y. Thomas Hou ◽  
Wenjing Lou

The Internet of medical things (IoMT) is a hybrid network inwhich numerous technologies like Bluetooth, Wi-Fi, and Cellular technology are integrated on a single platform. The internet of things applied to the medical healthcare necessitates enormous data rate and tremendous bandwidth along with better battery life with reliable and versatile connectivity. The use of 5G network satisfies these prerequisite with its tremendous data rate capabilities and assists human health services diagnosis and treatment. In this paper, improved proportional fair algorithm is introduced and is compared with existing scheduling algorithm for developing revolutionary changes in the medical healthcare.5G networks represent a contemporary approach which encounter a hybrid digital network for developing Internet of things. Performance metrics considered for simulation studies are throughput, path-loss and SNR


Sign in / Sign up

Export Citation Format

Share Document