Impact of Relay Selection Overhead in Cooperative Diversity Protocols

Author(s):  
Nikolaj Marchenko ◽  
Christian Bettstetter
Author(s):  
L. Ge ◽  
G. J. Chen ◽  
J. A. Chambers

The implementation of cooperative diversity with relays has advantages over point-to-point multiple-input multiple-output (MIMO) systems, in particular, overcoming correlated paths due to small inter-element spacing. A simple transmitter with one antenna may exploit cooperative diversity or space time coding gain through distributed relays. In this paper, similar distributed transmission is considered with the golden code, and the authors propose a new strategy for relay selection, called the maximum-mean selection policy, for distributed transmission with the full maximum-likelihood (ML) decoding and sphere decoding (SD) based on a wireless relay network. This strategy performs a channel strength tradeoff at every relay node to select the best two relays for transmission. It improves on the established one-sided selection strategy of maximum-minimum policy. Simulation results comparing the bit error rate (BER) based on different detectors and a scheme without relay selection, with the maximum-minimum and maximum-mean selection schemes confirm the performance advantage of relay selection. The proposed strategy yields the best performance of the three methods.


2020 ◽  
Author(s):  
Wei Jiang

Single-relay selection is a simple but efficient scheme for cooperative diversity among multiple user devices. However, the wrong selection of the best relay due to aged channel state information (CSI) remarkably degrades its performance, overwhelming this cooperative gain. Multi-relay selection is robust against channel aging but multiple timing offset (MTO) and multiple carrier frequency offset (MCFO) among spatially-distributed relays hinder its implementation in practical systems. In this paper, therefore, we propose a deep learning-based cooperative diversity method coined predictive relay selection (PRS) that chooses a single relay with the largest predicted CSI, which can alleviate the effect of channel aging while avoiding MTO and MCFO. Performance is evaluated analytically and numerically, revealing that PRS clearly outperforms the existing schemes with a negligible complexity burden.


Sign in / Sign up

Export Citation Format

Share Document