An on-chip 72×60 angle-sensitive single photon image sensor array for lens-less time-resolved 3-D fluorescence lifetime imaging

Author(s):  
Changhyuk Lee ◽  
Ben Johnson ◽  
Alyosha Molnar
2018 ◽  
Vol 53 (8) ◽  
pp. 2319-2330 ◽  
Author(s):  
Min-Woong Seo ◽  
Yuya Shirakawa ◽  
Yoshimasa Kawata ◽  
Keiichiro Kagawa ◽  
Keita Yasutomi ◽  
...  

2012 ◽  
Vol 59 (10) ◽  
pp. 2715-2722 ◽  
Author(s):  
Zhuo Li ◽  
Shoji Kawahito ◽  
Keita Yasutomi ◽  
Keiichiro Kagawa ◽  
Juichiro Ukon ◽  
...  

2021 ◽  
Author(s):  
Andrew L. Trinh ◽  
Alessandro Esposito

AbstractA deeper understanding of spatial resolution in microscopy fostered a technological revolution that is now permitting us to investigate the structure of the cell with nanometer resolution. Although fluorescence microscopy techniques enable scientists to investigate both the structure and biochemistry of the cell, the biochemical resolving power of a microscope is a physical quantity that is not well-defined or studied. To overcome this limitation, we carried out a theoretical investigation of the biochemical resolving power in fluorescence lifetime imaging microscopy, one of the most effective tools to investigate biochemistry in single living cells. With the theoretical analysis of information theory and Monte Carlo simulations, we describe how the ‘biochemical resolving power’ in time-resolved sensing depends on instrument specifications. We unravel common misunderstandings on the role of the instrument response function and provide theoretical insights that have significant practical implications in the design and use of time-resolved instrumentation.


2021 ◽  
Author(s):  
Julia R. Lazzari-Dean ◽  
Evan W. Miller

AbstractBackgroundMembrane potential (Vmem) exerts physiological influence across a wide range of time and space scales. To study Vmem in these diverse contexts, it is essential to accurately record absolute values of Vmem, rather than solely relative measurements.Materials & MethodsWe use fluorescence lifetime imaging of a small molecule voltage sensitive dye (VF2.1.Cl) to estimate mV values of absolute membrane potential.ResultsWe test the consistency of VF2.1.Cl lifetime measurements performed on different single photon counting instruments and find that they are in striking agreement (differences of <0.5 ps/mV in the slope and <50 ps in the y-intercept). We also demonstrate that VF2.1.Cl lifetime reports absolute Vmem under two-photon (2P) illumination with better than 20 mV of Vmem resolution, a nearly 10-fold improvement over other lifetime-based methods.ConclusionsWe demonstrate that VF-FLIM is a robust and portable metric for Vmem across imaging platforms and under both one-photon and two-photon illumination. This work is a critical foundation for application of VF-FLIM to record absolute membrane potential signals in thick tissue.


Sign in / Sign up

Export Citation Format

Share Document