11.3 A 160×120-pixel analog-counting single-photon imager with Sub-ns time-gating and self-referenced column-parallel A/D conversion for fluorescence lifetime imaging

Author(s):  
Matteo Perenzoni ◽  
Nicola Massari ◽  
Daniele Perenzoni ◽  
Leonardo Gasparini ◽  
David Stoppa
2021 ◽  
Author(s):  
Julia R. Lazzari-Dean ◽  
Evan W. Miller

AbstractBackgroundMembrane potential (Vmem) exerts physiological influence across a wide range of time and space scales. To study Vmem in these diverse contexts, it is essential to accurately record absolute values of Vmem, rather than solely relative measurements.Materials & MethodsWe use fluorescence lifetime imaging of a small molecule voltage sensitive dye (VF2.1.Cl) to estimate mV values of absolute membrane potential.ResultsWe test the consistency of VF2.1.Cl lifetime measurements performed on different single photon counting instruments and find that they are in striking agreement (differences of <0.5 ps/mV in the slope and <50 ps in the y-intercept). We also demonstrate that VF2.1.Cl lifetime reports absolute Vmem under two-photon (2P) illumination with better than 20 mV of Vmem resolution, a nearly 10-fold improvement over other lifetime-based methods.ConclusionsWe demonstrate that VF-FLIM is a robust and portable metric for Vmem across imaging platforms and under both one-photon and two-photon illumination. This work is a critical foundation for application of VF-FLIM to record absolute membrane potential signals in thick tissue.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
João L. Lagarto ◽  
Federica Villa ◽  
Simone Tisa ◽  
Franco Zappa ◽  
Vladislav Shcheslavskiy ◽  
...  

2015 ◽  
Vol 4 (1) ◽  
Author(s):  
Wolfgang Becker ◽  
Vladislav Shcheslavskiy

AbstractNear-infrared (NIR) dyes are used as fluorescence markers in small animal imaging and in diffuse optical tomography. In these applications it is important to know whether the dyes bind to proteins or to other tissue constituents, and whether their fluorescence lifetimes depend on the targets they bind to. Unfortunately, neither the optical beam paths nor the detectors of commonly used in confocal and multiphoton laser scanning microscopes (LSMs) directly allow for excitation and detection of NIR fluorescence. This paper presents three ways of adapting existing LSMs with time-correlated single photon counting (TCSPC) fluorescence lifetime imaging (FLIM) systems for NIR FLIM: 1) confocal systems with wideband beamsplitters and diode laser excitation, 2) confocal systems with wideband beamsplitters and one-photon excitation by titanium-sapphire lasers, and 3) two-photon systems with optical parametric oscillator (OPO) excitation and non-descanned detection. A number of NIR dyes are tested in biological tissue. All of them show clear lifetime changes depending on the tissue structures they are bound to. We therefore believe that NIR FLIM can deliver supplementary information about the tissue composition and on local biochemical parameters.


Sign in / Sign up

Export Citation Format

Share Document