instrument response function
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 16)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 922 (1) ◽  
pp. 65
Author(s):  
P. S. Athiray ◽  
Amy R. Winebarger ◽  
Patrick Champey ◽  
Ken Kobayashi ◽  
Sabrina Savage ◽  
...  

Abstract The Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) is a sounding rocket experiment that observes the soft X-ray spectrum of the Sun from 6.0–24 Å (0.5–2.0 keV), successfully launched on 2021 July 30. End-to-end alignment of the flight instrument and calibration experiments are carried out using the X-ray and Cryogenic Facility at NASA Marshall Space Flight Center. In this paper, we present the calibration experiments of MaGIXS, which include wavelength calibration, measurement of line spread function, and determination of effective area. Finally, we use the measured instrument response function to predict the expected count rates for MaGIXS flight observation looking at a typical solar active region.


Instruments ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 18
Author(s):  
Fabio Acerbi ◽  
Anurag Behera ◽  
Alberto Dalla Mora ◽  
Laura Di Sieno ◽  
Alberto Gola

Silicon photomultipliers (SiPM) are pixelated single-photon detectors combining high sensitivity, good time resolution and high dynamic range. They are emerging in many fields, such as time-domain diffuse optics (TD-DO). This is a promising technique in neurology, oncology, and quality assessment of food, wood, and pharmaceuticals. SiPMs can have very large areas and can significantly increase the sensitivity of TD-DO in tissue investigation. However, such improvement is currently limited by the high detector noise and the worsening of SiPM single-photon time resolution due to the large parasitic capacitances. To overcome such limitation, in this paper, we present two single-photon detection modules, based on 6 × 6 mm2 and 10 × 10 mm2 SiPMs, housed in vacuum-sealed TO packages, cooled to −15 °C and −36 °C, respectively. They integrate front-end amplifiers and temperature controllers, being very useful instruments for TD-DO and other biological and physical applications. The signal extraction from the SiPM was improved. The noise is reduced by more than two orders of magnitude compared to the room temperature level. The full suitability of the proposed detectors for TD-DO measurements is outside the scope of this work, but preliminary tests were performed analyzing the shape and the stability of the Instrument Response Function. The proposed modules are thus fundamental building blocks to push the TD-DO towards deeper investigations inside the body.


Author(s):  
J. Seifert ◽  
S. J. Carey ◽  
S. Schauermann ◽  
S. Shaikhutdinov ◽  
H.-J. Freund

AbstractA new method to analyze microcalorimetry data was employed to study the adsorption energies and sticking probabilities of D2O and CO2 on CaO(001) at several temperatures. This method deconvolutes the line shapes of the heat detector response into an instrument response function and exponential decay functions, which correspond to the desorption of distinct surface species. This allows for a thorough analysis of the adsorption, dissociation, and desorption processes that occur during our microcalorimetry experiments. Our microcalorimetry results, show that D2O adsorbs initially with an adsorption energy of 85–90 kJ/mol at temperatures ranging from 120 to 300 K, consistent with prior spectroscopic studies that indicate dissociation. This adsorption energy decreases with increasing coverage until either D2O multilayers are formed at low temperatures (120 K) or the surface is saturated (> 150 K). Artificially producing defects on the surface by sputtering prior to dosing D2O sharply increases this adsorption energy, but these defects may be healed after annealing the surface to 1300 K. CO2 adsorbs on CaO(001) with an initial adsorption energy of ~ 125 kJ/mol, and decreases until the saturation coverage is reached, which is a function of surface temperature. The results showed that pre-adsorbed water blocks adsorption sites, lowers the saturation coverage, and lowers the measured adsorption energy of CO2. The calorimetry data further adds to our understanding of D2O and CO2 adsorption on oxide surfaces.


2021 ◽  
Vol 92 (4) ◽  
pp. 043546
Author(s):  
Z. L. Mohamed ◽  
O. M. Mannion ◽  
J. P. Knauer ◽  
C. J. Forrest ◽  
V. Yu. Glebov ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Dong Xiao ◽  
Natakorn Sapermsap ◽  
Mohammed Safar ◽  
Margaret Rose Cunningham ◽  
Yu Chen ◽  
...  

Time-correlated single-photon counting (TCSPC) has been the gold standard for fluorescence lifetime imaging (FLIM) techniques due to its high signal-to-noize ratio and high temporal resolution. The sensor system's temporal instrument response function (IRF) should be considered in the deconvolution procedure to extract the real fluorescence decay to compensate for the distortion on measured decays contributed by the system imperfections. However, to measure the instrument response function is not trivial, and the measurement setup is different from measuring the real fluorescence. On the other hand, automatic synthetic IRFs can be directly derived from the recorded decay profiles and provide appropriate accuracy. This paper proposed and examined a synthetic IRF strategy. Compared with traditional automatic synthetic IRFs, the new proposed automatic synthetic IRF shows a broader dynamic range and better accuracy. To evaluate its performance, we examined simulated data using nonlinear least square deconvolution based on both the Levenberg-Marquardt algorithm and the Laguerre expansion method for bi-exponential fluorescence decays. Furthermore, experimental FLIM data of cells were also analyzed using the proposed synthetic IRF. The results from both the simulated data and experimental FLIM data show that the proposed synthetic IRF has a better performance compared to traditional synthetic IRFs. Our work provides a faster and precise method to obtain IRF, which may find various FLIM-based applications. We also reported in which conditions a measured or a synthesized IRF can be applied.


2021 ◽  
Author(s):  
Andrew L. Trinh ◽  
Alessandro Esposito

AbstractA deeper understanding of spatial resolution in microscopy fostered a technological revolution that is now permitting us to investigate the structure of the cell with nanometer resolution. Although fluorescence microscopy techniques enable scientists to investigate both the structure and biochemistry of the cell, the biochemical resolving power of a microscope is a physical quantity that is not well-defined or studied. To overcome this limitation, we carried out a theoretical investigation of the biochemical resolving power in fluorescence lifetime imaging microscopy, one of the most effective tools to investigate biochemistry in single living cells. With the theoretical analysis of information theory and Monte Carlo simulations, we describe how the ‘biochemical resolving power’ in time-resolved sensing depends on instrument specifications. We unravel common misunderstandings on the role of the instrument response function and provide theoretical insights that have significant practical implications in the design and use of time-resolved instrumentation.


2021 ◽  
Vol 18 (1) ◽  
pp. 115-122
Author(s):  
V. G. Getmanov ◽  
V. E. Chinkin ◽  
M. N. Dobrovolsky ◽  
R. V. Sidorov ◽  
A. V. Kryanev ◽  
...  

2020 ◽  
Vol 499 (3) ◽  
pp. 3494-3509
Author(s):  
M Fiori ◽  
L Zampieri ◽  
A Burtovoi ◽  
P Caraveo ◽  
L Tibaldo

ABSTRACT SNR G0.9+0.1 is a well-known source in the direction of the Galactic Centre composed by a Supernova Remnant (SNR) and a Pulsar Wind Nebula (PWN) in the core. We investigate the potential of the future Cherenkov Telescope Array (CTA), simulating observations of SNR G0.9 + 0.1. We studied the spatial and spectral properties of this source and estimated the systematic errors of these measurements. The source will be resolved if the very high-energy emission region is bigger than ∼0.65′. It will also be possible to distinguish between different spectral models and calculate the cutoff energy. The systematic errors are dominated by the Instrument Response Function instrumental uncertainties, especially at low energies. We computed the evolution of a young PWN inside an SNR using a one-zone time-dependent leptonic model. We applied the model to the simulated CTA data and found that it will be possible to accurately measure the cutoff energy of the γ-ray spectrum. Fitting of the multiwavelength spectrum will allow us to constrain also the magnetization of the PWN. Conversely, a pure power-law spectrum would rule out this model. Finally, we checked the impact of the spectral shape and the energy density of the Inter-Stellar Radiation Fields on the estimate of the parameters of the PWN, finding that they are not significantly affected.


2020 ◽  
pp. 1471082X2094722
Author(s):  
Denise Costantin ◽  
Andrea Sottosanti ◽  
Alessandra R. Brazzale ◽  
Denis Bastieri ◽  
JunHui Fan

Identifying as yet undetected high-energy sources in the [Formula: see text]-ray sky is one of the declared objectives of the Fermi Large Area Telescope (LAT) Collaboration. We develop a Bayesian mixture model which is capable of disentangling the high-energy extra-galactic sources present in a given sky region from the pervasive background radiation. We achieve this by combining two model components. The first component models the emission activity of the single sources and incorporates the instrument response function of the Fermi [Formula: see text]-ray space telescope. The second component reliably reflects the current knowledge of the physical phenomena which underlie the [Formula: see text]-ray background. The model parameters are estimated using a reversible jump MCMC algorithm, which simultaneously returns the number of detected sources, their locations and relative intensities, and the background component. Our proposal is illustrated using a sample of the Fermi LAT data. In the analysed sky region, our model correctly identifies 116 sources out of the 132 present. The detection rate and the estimated directions and intensities of the identified sources are largely unaffected by the number of detected sources.


Sign in / Sign up

Export Citation Format

Share Document