Classification Based Method Using Fast Fourier Transform (FFT) and Total Harmonic Distortion (THD) Dedicated to Proton Exchange Membrane Fuel Cell (PEMFC) Diagnosis

Author(s):  
A. H. Detti ◽  
S. Jemei ◽  
S. Morando ◽  
N. Yousfi Steiner
2013 ◽  
Vol 367 ◽  
pp. 199-203
Author(s):  
S.R. Thilaga ◽  
S. Suresh Kumar

This paper proposes a single-phase nine-level Hybrid Cascaded Multilevel Inverter (HCMLI) for Proton Exchange Membrane (PEM) fuel cell with a novel pulse width-modulated (PWM) technique. This technique employs multiple reference signals and a single triangular carrier wave which is used to generate PWM pulses. The inverter offers much less total harmonic distortion and can operate at near-unity power factor. Its performance has been verified based on Total Harmonic Distortion using MATLAB/SIMULINK.


2016 ◽  
Vol 83 (6) ◽  
Author(s):  
Reinhard Klambauer ◽  
Bernd Eichberger

ZusammenfassungFür den Test und die Entwicklung von „Proton-Exchange-Membrane“-(PEM-)Brennstoffzellen sind die elektrochemische Impedanzspektroskopie (EIS) und „Total-Harmonic-Distortion“-Analyse (THDA) essentielle Messmethoden. Diese Forschungsarbeit beschäftigt sich mit der Erweiterung dieser Methoden. Durch eine Mehrkanalmessung wird die Impedanz örtlich aufgelöst bestimmt. Das neue Messsystem ist in der Lage, den zeitlichen Verlauf von Strom und Spannung mit einer hohen Abtastrate gleichzeitig an bis zu 100 Kanälen zu erfassen. Mit zusätzlicher digitaler Signalverarbeitung ist es ein vielseitiges Messinstrument für EIS, THDA und die Stromverteilung im Querschnitt der Brennstoffzelle.


Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1592 ◽  
Author(s):  
Carlos A. Villarreal-Hernandez ◽  
Javier Loranca-Coutiño ◽  
Jonathan C. Mayo-Maldonado ◽  
Jesus E. Valdez-Resendiz ◽  
Pedro M. García-Vite ◽  
...  

This paper presents a current-based control for a proton-exchange membrane fuel cell using the so-called double dual boost topology. In particular, we introduce a discrete time controller that, in coordination with a particular selection of inductors and capacitors, minimizes the switching ripple at the input port (current ripple) and the output port (voltage ripple) of the double dual boost converter. This converter has a particular characteristic, in contrast to the classical interleaved boost topology, in the double dual boost, the phases of the converter can have different duty ratios. The freedom to choose the duty ration for each phase can be used to select the operative point in which the input current is equal to zero. However, if individual controllers are used for each branch of the converter, the equilibrium after a transient can differ from the minimum ripple operation point; the proposed scheme regulates the output voltage and, at the same time, ensures the equilibrium remains in the minimum ripple operation in steady state. In this way, the converter can mitigate the harmonic distortion on the current extracted from the proton-exchange membrane fuel cell, which is beneficial to improve the efficiency and lifetime of the cell, and on the output voltage delivered to an output direct current bus. The results of the experiment are presented to validate the principles of the proposed system.


2019 ◽  
Author(s):  
Valentina Guccini ◽  
Annika Carlson ◽  
Shun Yu ◽  
Göran Lindbergh ◽  
Rakel Wreland Lindström ◽  
...  

The performance of thin carboxylated cellulose nanofiber-based (CNF) membranes as proton exchange membranes in fuel cells has been measured in-situ as a function of CNF surface charge density (600 and 1550 µmol g<sup>-1</sup>), counterion (H<sup>+</sup>or Na<sup>+</sup>), membrane thickness and fuel cell relative humidity (RH 55 to 95 %). The structural evolution of the membranes as a function of RH as measured by Small Angle X-ray scattering shows that water channels are formed only above 75 % RH. The amount of absorbed water was shown to depend on the membrane surface charge and counter ions (Na<sup>+</sup>or H<sup>+</sup>). The high affinity of CNF for water and the high aspect ratio of the nanofibers, together with a well-defined and homogenous membrane structure, ensures a proton conductivity exceeding 1 mS cm<sup>-1</sup>at 30 °C between 65 and 95 % RH. This is two orders of magnitude larger than previously reported values for cellulose materials and only one order of magnitude lower than Nafion 212. Moreover, the CNF membranes are characterized by a lower hydrogen crossover than Nafion, despite being ≈ 30 % thinner. Thanks to their environmental compatibility and promising fuel cell performance the CNF membranes should be considered for new generation proton exchange membrane fuel cells.<br>


Sign in / Sign up

Export Citation Format

Share Document