Diminished reality for acceleration stimulus: Motion sickness reduction with vection for autonomous driving

Author(s):  
Taishi Sawabe ◽  
Masayuki Kanbara ◽  
Norihiro Hagita
Author(s):  
Sara Luciani ◽  
Angelo Bonfitto ◽  
Nicola Amati ◽  
Andrea Tonoli

Abstract This paper presents a method based on a Model Predictive Control (MPC) aiming to optimize the passenger comforts in assisted and autonomous vehicles. The controller works on the lateral and longitudinal dynamics of the car, providing front wheel steering angle and acceleration/deceleration command. The comfort is evaluated through two indexes extracted from the ISO 2631: an equivalent acceleration aeq and a Motion Sickness Dose Value (MSDV) index. The MPC weighting parameters are designed according to the values assumed by these indexes. Specifically, each weighting parameter is changed until the most satisfying comfort evaluation and the maximum vehicle performances, in terms of lateral deviation, tracking velocity and relative yaw angle, are reached. The controller is tested numerically on a simulated scenario resulting from real GPS data obtained in a highway. The method is compared with an alternative control strategy based on the combination of a PID and a Stanley control for the longitudinal and lateral dynamics, respectively. The results demonstrate the effectiveness of the approach, leading to a low percentage of passengers can experience motion sickness.


Author(s):  
Mert Sever ◽  
Namik Zengin ◽  
Ahmet Kirli ◽  
M Selçuk Arslan

It is anticipated that passengers in autonomous vehicles will be more occupied with in-vehicle activities. Loss of the authority on driving and engaging in non-driving tasks could cause lower predictability of car motions. This decrease in predictability is expected to increase the sensitivity to carsickness. It appears that it is crucial to develop controllers for autonomous driving with the capability of improving passenger comfort by reducing carsickness. In this regard, it can be asked how the motion variables can be used for the minimization of a carsickness-related measure, while the vehicle is required to follow a given path. In this study, an optimal control approach is being proposed to minimize a quantitative measure of carsickness. In order to address carsickness during autonomous maneuvers, the well-known motion sickness dose value formulation in ISO 2631-1 is augmented with horizontal direction motion components to define a performance measure. The performance measure includes the motion sensed in vestibular system rather than the motion occurring in the vehicle itself. Therefore, mathematical model of the vestibular system is included in the design of controller. Effects of acceleration and jerk are included in performance measure simultaneously. Control oriented linear parameter varying vehicle model is developed to design the path following controller. By means of simulation studies in which path following control is implemented, motion sickness dose values of the controlled vehicle are examined. It is shown by a regular lane change test at various speeds that the proposed controller, which seeks the minimization of the motion sickness dose value, achieves a reduction of the acceleration and jerk felt by a passenger, while the vehicle follows the given path.


Author(s):  
Nidzamuddin Md. Yusof ◽  
J. Karjanto ◽  
J. M. B. Terken ◽  
F. L. M. Delbressine ◽  
G. W. M. Rauterberg

Many previous studies mention that passive drivers or passengers of fully-automated driving cars have less awareness of the surrounding and more experience to motion sickness symptoms when engaging in non-driving tasks. This occurrence is especially magnified when riding in an urban area with lots of junctions and corners. The aim of the current study is to investigate the effects of peripheral information about upcoming manoeuvres through a vibrotactile display in increasing the fully-automated driving car passengers’ awareness of situations and mitigating their motion sickness level. Twenty participants took part in the experiment which used a Wizard of Oz method to simulate autonomous driving, and the experiment was conducted in an instrumented car on a real road environment. Objective and subjective measurements were gathered. The results show that the implementation of the vibrotactile display increased situation awareness but failed to reduce the motion sickness. This study concludes that in order to mitigate motion sickness inside a fully-automated driving car, more specific information need to be included in the peripheral information. In addition, a device that can actively help in controlling the posture movements should also be implemented in the vehicle.


2020 ◽  
Vol 29 (2) ◽  
pp. 188-198
Author(s):  
Cynthia G. Fowler ◽  
Margaret Dallapiazza ◽  
Kathleen Talbot Hadsell

Purpose Motion sickness (MS) is a common condition that affects millions of individuals. Although the condition is common and can be debilitating, little research has focused on the vestibular function associated with susceptibility to MS. One causal theory of MS is an asymmetry of vestibular function within or between ears. The purposes of this study, therefore, were (a) to determine if the vestibular system (oculomotor and caloric tests) in videonystagmography (VNG) is associated with susceptibility to MS and (b) to determine if these tests support the theory of an asymmetry between ears associated with MS susceptibility. Method VNG was used to measure oculomotor and caloric responses. Fifty young adults were recruited; 50 completed the oculomotor tests, and 31 completed the four caloric irrigations. MS susceptibility was evaluated with the Motion Sickness Susceptibility Questionnaire–Short Form; in this study, percent susceptibility ranged from 0% to 100% in the participants. Participants were divided into three susceptibility groups (Low, Mid, and High). Repeated-measures analyses of variance and pairwise comparisons determined significance among the groups on the VNG test results. Results Oculomotor test results revealed no significant differences among the MS susceptibility groups. Caloric stimuli elicited responses that were correlated positively with susceptibility to MS. Slow-phase velocity was slowest in the Low MS group compared to the Mid and High groups. There was no significant asymmetry between ears in any of the groups. Conclusions MS susceptibility was significantly and positively correlated with caloric slow-phase velocity. Although asymmetries between ears are purported to be associated with MS, asymmetries were not evident. Susceptibility to MS may contribute to interindividual variability of caloric responses within the normal range.


Sign in / Sign up

Export Citation Format

Share Document