Feed-forward neural network for Network Intrusion Detection

Author(s):  
Arnaud Rosay ◽  
Florent Carlier ◽  
Pascal Leroux
Author(s):  
Loye Lynn Ray ◽  
Henry Felch

Today's anomaly-based network intrusion detection systems (IDSs) are plagued with detecting new and unknown attacks. The review of the literature builds ideas for researching the problem of detecting these attacks using multi-layered feed forward neural network (MLFFNN) IDSs. The scope of the paper focused on a review of the literature from primarily 2008 to the present found in peer-review and scholarly journals. A key word search was used to compare and contrast the literature to find strengths, weaknesses and gaps. The significance of the research found that further work is needed to improve the performance and convergence rates of MLFFNN IDSs. This literature review contributes to the area of intrusion detection by looking at the effects of architecture, algorithms, and input data on the performance and convergence rates of MLFFNN IDSs.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 834
Author(s):  
Muhammad Ashfaq Khan

Nowadays, network attacks are the most crucial problem of modern society. All networks, from small to large, are vulnerable to network threats. An intrusion detection (ID) system is critical for mitigating and identifying malicious threats in networks. Currently, deep learning (DL) and machine learning (ML) are being applied in different domains, especially information security, for developing effective ID systems. These ID systems are capable of detecting malicious threats automatically and on time. However, malicious threats are occurring and changing continuously, so the network requires a very advanced security solution. Thus, creating an effective and smart ID system is a massive research problem. Various ID datasets are publicly available for ID research. Due to the complex nature of malicious attacks with a constantly changing attack detection mechanism, publicly existing ID datasets must be modified systematically on a regular basis. So, in this paper, a convolutional recurrent neural network (CRNN) is used to create a DL-based hybrid ID framework that predicts and classifies malicious cyberattacks in the network. In the HCRNNIDS, the convolutional neural network (CNN) performs convolution to capture local features, and the recurrent neural network (RNN) captures temporal features to improve the ID system’s performance and prediction. To assess the efficacy of the hybrid convolutional recurrent neural network intrusion detection system (HCRNNIDS), experiments were done on publicly available ID data, specifically the modern and realistic CSE-CIC-DS2018 data. The simulation outcomes prove that the proposed HCRNNIDS substantially outperforms current ID methodologies, attaining a high malicious attack detection rate accuracy of up to 97.75% for CSE-CIC-IDS2018 data with 10-fold cross-validation.


Sign in / Sign up

Export Citation Format

Share Document