Loop-Free Enhanced Intersection-Based Perimeter Geo-Routing with Carry-and-Forward for Urban VANETs

Author(s):  
Mehdi Tavakoli Garrosi ◽  
Xi Xiang ◽  
Mohsen Noroozi
Keyword(s):  
Author(s):  
Radu Ioan Ciobanu ◽  
Ciprian Dobre

When mobile devices are unable to establish direct communication, or when communication should be offloaded to cope with large throughputs, mobile collaboration can be used to facilitate communication through opportunistic networks. These types of networks, formed when mobile devices communicate only using short-range transmission protocols, usually when users are close, can help applications still exchange data. Routes are built dynamically, since each mobile device is acting according to the store-carry-and-forward paradigm. Thus, contacts are seen as opportunities to move data towards the destination. In such networks data dissemination is usually based on a publish/subscribe model. Opportunistic data dissemination also raises questions concerning user privacy and incentives. In this the authors present a motivation of using opportunistic networks in various real life use cases, and then analyze existing relevant work in the area of data dissemination. The authors present the categories of a proposed taxonomy that captures the capabilities of data dissemination techniques used in opportunistic networks. Moreover, the authors survey relevant techniques and analyze them using the proposed taxonomy.


2015 ◽  
Vol 2015 ◽  
pp. 1-13
Author(s):  
Aslinda Hassan ◽  
Mohamed H. Ahmed ◽  
M. A. Rahman

In a sparse vehicular ad hoc network, a vehicle normally employs a carry and forward approach, where it holds the message it wants to transmit until the vehicle meets other vehicles or roadside units. A number of analyses in the literature have been done to investigate the time delay when packets are being carried by vehicles on both unidirectional and bidirectional highways. However, these analyses are focusing on the delay between either two disconnected vehicles or two disconnected vehicle clusters. Furthermore, majority of the analyses only concentrate on the expected value of the end-to-end delay when the carry and forward approach is used. Using regression analysis, we establish the distribution model for the time delay between two disconnected vehicle clusters as an exponential distribution. Consequently, a distribution is newly derived to represent the number of clusters on a highway using a vehicular traffic model. From there, we are able to formulate end-to-end delay model which extends the time delay model for two disconnected vehicle clusters to multiple disconnected clusters on a unidirectional highway. The analytical results obtained from the analytical model are then validated through simulation results.


2017 ◽  
Vol 2017 ◽  
pp. 1-18 ◽  
Author(s):  
J. A. Fraire ◽  
P. Madoery ◽  
S. Burleigh ◽  
M. Feldmann ◽  
J. Finochietto ◽  
...  

Existing Internet protocols assume persistent end-to-end connectivity, which cannot be guaranteed in disruptive and high-latency space environments. To operate over these challenging networks, a store-carry-and-forward communication architecture called Delay/Disruption Tolerant Networking (DTN) has been proposed. This work provides the first examination of the performance and robustness of Contact Graph Routing (CGR) algorithm, the state-of-the-art routing scheme for space-based DTNs. To this end, after a thorough description of CGR, two appealing satellite constellations are proposed and evaluated by means of simulations. Indeed, the DtnSim simulator is introduced as another relevant contribution of this work. Results enabled the authors to identify existing CGR weaknesses and enhancement opportunities.


2011 ◽  
Vol 7 (1) ◽  
pp. 1 ◽  
Author(s):  
Bruno M. C. Silva ◽  
Vasco N. G. J. Soares ◽  
Joel J. P. C. Rodrigues

Vehicular delay-tolerant networks (VDTNs) are opportunistic networks that enable connectivity in challenged scenarios with unstable links where end-to-end communications may not exist. VDTN architecture handles non-real timeapplications using vehicles to relay messages between network nodes. To address the problem of intermittent connectivity, network nodes store messages on their buffers, carrying them through the network while waiting for transfer opportunities. The storage capacity of the nodes affects directly the network performance. Therefore, it is important to incorporate suitable network protocols using self-contained messages to improve communication that supports store-carry-and-forward operation procedures. Clearly, such procedures motivate content cachingand retrieval. This paper surveys the state-of-the art on intelligent caching and retrieval mechanisms focusing on ad-hoc and delay tolerant networks (DTN). These approaches can offer important insights for upcoming proposals on intelligent caching and retrieval mechanisms for VDTNs.


Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1875 ◽  
Author(s):  
Jaime Galán-Jiménez ◽  
Javier Berrocal ◽  
Jose Garcia-Alonso ◽  
Manuel Jesús Azabal

The massive amount of traffic required by the emerging Internet of Things (IoT) paradigm can be supported by the imminent arrival of 5G next-generation networks. However, the limited capacity of resources in IoT nodes, e.g., battery lifetime or buffer space, opens a challenge to be taken into account when proposing new routing solutions on IoT scenarios with intermittent connectivity. In this paper, we propose the concept of Opportunistic Context-Virtual Networks (OCVNs). The novelty of this approach is to create virtual groups of nodes that share interests in common for routing purposes. Therefore, only the nodes that are interested in the content of the messages that are flowing throughout the network are used as relaying nodes, providing their own resources for the sake of the communication. By leveraging the use of store-carry-and-forward mechanisms, a novel routing algorithm is proposed and evaluated over two realistic scenarios. Experimental results reveal that our solution outperforms other well-known opportunistic routing algorithms in terms of delivery probability and overhead ratio, while resource usage of relaying nodes is significantly reduced.


Sign in / Sign up

Export Citation Format

Share Document