scholarly journals A Novel Routing Scheme for Creating Opportunistic Context-Virtual Networks in IoT Scenarios

Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1875 ◽  
Author(s):  
Jaime Galán-Jiménez ◽  
Javier Berrocal ◽  
Jose Garcia-Alonso ◽  
Manuel Jesús Azabal

The massive amount of traffic required by the emerging Internet of Things (IoT) paradigm can be supported by the imminent arrival of 5G next-generation networks. However, the limited capacity of resources in IoT nodes, e.g., battery lifetime or buffer space, opens a challenge to be taken into account when proposing new routing solutions on IoT scenarios with intermittent connectivity. In this paper, we propose the concept of Opportunistic Context-Virtual Networks (OCVNs). The novelty of this approach is to create virtual groups of nodes that share interests in common for routing purposes. Therefore, only the nodes that are interested in the content of the messages that are flowing throughout the network are used as relaying nodes, providing their own resources for the sake of the communication. By leveraging the use of store-carry-and-forward mechanisms, a novel routing algorithm is proposed and evaluated over two realistic scenarios. Experimental results reveal that our solution outperforms other well-known opportunistic routing algorithms in terms of delivery probability and overhead ratio, while resource usage of relaying nodes is significantly reduced.

2020 ◽  
pp. 224-228
Author(s):  
Saravanan M ◽  
Kamaraj K ◽  
Eswaran Arumugam

Vehicle Adhoc Network (VANET) permits self-organized infrastructure. Link or Connectivity breakage or long delay (intermittent connection) is an important issue in the VANET which arises due to the dynamic topological changes. Mainly two algorithms Vehicle assisted Data Delivery (VADD) and Opportunistic routing algorithm supports for handling delay/disruption tolerant network (DTN). Intention of DTN is to create dynamic link between the sender and receiver vehicle in the case of link disruption or absence of path between two nodes and forwards the data using store carry and forward. VADD carry and forward the data as much as possible in disconnected network using intersection mode, straightway mode or destination mode. Opportunistic routing can deal the unreliable data and intermittent connectivity in VANET by considering the multiple nodes as a next hop forwarder instead of considering pre-selected single node to be the best forwarder. This paper gives the study about various opportunistic routing algorithms for handling delay/disruption tolerant network.


Author(s):  
LEANNA VIDYA YOVITA ◽  
JODI NUGROHO RESTU

ABSTRAKAlgoritma routing pada jaringan klasik dapat berjalan jika hubungan end-to-end selalu ada.Algoritma routing ini bekerja dengan menggunakan informasi mengenai seluruh jalur yang tersedia.Untuk itu, pada jaringan dengan kondisi ekstrim seperti ini diperlukan algoritma routing yang sesuai.Salah satu algoritma routing yang dapat dijalankan pada Delay Tolerant Network (DTN) adalah First Contact.Algoritma iniakanmelakukan penggandaan pesan yang dibawanyauntuk kemudian diberikan kepada node lainnya yang pertama kali ditemui.Dalam penelitian ini ditambahkan stationary relay node untuk meningkatkan delivery probability.Dengan penambahan stationary relay node diperoleh peningkatan delivery probability 2 hingga 6% dibandingkan dengan jaringan tanpa stationary relay node. Parameter overhead ratio meningkat  sebesar 7-18% dibandingkan jaringan tanpa Stationary relay node. Algoritma First Contact dengan tambahan Stationary relay nodejuga memberikan tambahan average latency, 118 – 171 detik.Nilaiini berbanding lurus dengan jumlah mobile node DTN yang ada pada area tersebut.Kata kunci: Delay Tolerant Network, first contact,Stationaryrelaynode, routing algorithm, delivery probability, overhead ratio, average latency.ABSTRACTClassical routing algorithms only works if there is end to end connection.This algorithms uses the information about every available path, and then choose the best path related to spesific metric.. For the networks with the extreme condition, it is needed the suitable routing alorithms. One of the routing algorithms that is able to be applicated in Delay Tolerant Network (DTN) is First Contact. This algorithm will make a single copy message and then forward it to the first encountered node. In this research, the stationaryrelaynodes were added to improve delivery probability. The effect of adding stationary relay node is increasing the delivery probability about 2-6%, compared to networks without stationary relay node. The overhead ratio increased about  7-18% compared to networks without stationary relay node. First Contact algorithm with stationary relay node gives bigger average latency, 118 – 171 second. This value is directly proportional to the number of mobile DTN nodes that exist in the area.Keywords: Delay Tolerant Network, first contact, Stationaryrelaynode, routing algorithm, delivery probability, overhead ratio, average latency.. 


1970 ◽  
Vol 5 (1) ◽  
Author(s):  
Shariq Haseeb Khairul Azami Sidek Ahmad Faris Ismail, Lai W.K. ◽  
Aw Yit Mei

Successful implementation and operation of a network largely depends on the routing algorithm in use. To date, several routing algorithms are in use but the problem with these algorithms is that they are either not adaptive or not robust enough, thus limiting the proper use of bandwidth.  AntNet is an innovative algorithm that may be used for data networks. It is a combination of both static and dynamic routing algorithms. In this algorithm, a group of mobile agents (compared to real ants) form paths between source and destination nodes. They explore the network continuously and exchange obtained information indirectly, in order to update the routing tables at different nodes. Our version of AntNet (hereinafter referred to as AntNet2.0) has been improved to overcome the problems with other algorithms. This paper compares the performance of AntNet2.0 against two other commercially popular algorithms, viz. link state routing algorithm and distant vector routing algorithm. The performance matrix used to compare the algorithms is based on average throughput, packet loss, packet drop and end-to-end delay. Convergence time for this algorithm on a nation-wide telecommunications network will also be discussed. Conclusions and areas of further work will also be presented in lucid manner, so that it may be transformed into real practice in the future.Key Words: mobile agents, swarm intelligence, networks and constant bit rate


2006 ◽  
Vol 07 (01) ◽  
pp. 91-99 ◽  
Author(s):  
Keith Hellman ◽  
Michael Colagrosso

We investigate a known optimal lifetime solution for a linear wireless sensor network through simulation, and propose alternative solutions where a known optimal solution does not exist. The network is heterogeneous in the sensors' energy distribution and also in the amount of data each sensor must communicate. As a basis for comparison, we analyze the lifetime of a network using a simple, nearest-neighbor routing algorithm, and an analytic solution to the optimal lifetime of networks meeting certain constraints. Alternative solutions considered range from those requiring global knowledge of the network to solutions using only next-neighbor knowledge. We compare the performance of all the routing algorithms in simulation.


2021 ◽  
Vol 20 (3) ◽  
pp. 1-6
Author(s):  
Mohammed Shaba Saliu ◽  
Muyideen Omuya Momoh ◽  
Pascal Uchenna Chinedu ◽  
Wilson Nwankwo ◽  
Aliu Daniel

Network-on-Chip (NoC) has been proposed as a viable solution to the communication challenges on System-on-Chips (SoCs). As the communication paradigm of SoC, NoCs performance depends mainly on the type of routing algorithm chosen. In this paper different categories of routing algorithms were compared. These include XY routing, OE turn model adaptive routing, DyAD routing and Age-Aware adaptive routing.  By varying the load at different Packet Injection Rate (PIR) under random traffic pattern, comparison was conducted using a 4 × 4 mesh topology. The Noxim simulator, a cycle accurate systemC based simulator was employed. The packets were modeled as a Poisson distribution; first-in-first-out (FIFO) input buffer channel with a depth of five (5) flits and a flit size of 32 bits; and a packet size of 3 flits respectively. The simulation time was 10,000 cycles. The findings showed that the XY routing algorithm performed better when the PIR is low.  In a similar vein, the DyAD routing and Age-aware algorithms performed better when the load i.e. PIR is high.


Author(s):  
S.Krishna Prabha ◽  
◽  
Broumi said ◽  
Selçuk Topal ◽  
◽  
...  

Routers steer and bid network data, through packets that hold a variety of categories of data such as records, messages, and effortless broadcasts like web interfaces. The procedure of choosing a passageway for traffic in a network or between several networks is called routing. Starting from telephone networks to public transportation the principles of routing are applied. Routing is the higher-level decision-making that directs network packets from their source en route for their destination through intermediate network nodes by specific packet forwarding mechanisms. The main function of the router is to set up optimized paths among the different nodes in the network. An efficient novel routing algorithm is proposed with the utilization of neutrosophic fuzzy logic in this work addition to many routing algorithms for finding the optimal path in the literature. In this approach, each router makes its own routing decision in the halting time. Various concepts like routing procedures, most expected vector, most expected object, and list of estimated delays are explained.


Author(s):  
Alaa E. Abdallah ◽  
Mohammad Bsoul ◽  
Emad E. Abdallah ◽  
Ibrahim Al–Oqily ◽  
George Kao

In geographical routing algorithms, mobile nodes rely on geographical position to make routing judgments. Researchers frequently discuss such routing algorithms in (2D) space. However, in reality, mobile nodes spread in (3D) space. In this paper the authors present four new 3D geographical-based routing algorithms Cylinder, Greedy-Cylinder, Cluster-Cylinder, and Greedy-cluster-Cylinder. In Cylinder routing, the nodes are locally projected on the inner surface of a cylinder, perimeter routing is executed after that. Greedy-Cylinder starts with Greedy routing algorithm until a local minimum is reached. The algorithm then switches to Cylinder routing. Cluster-Cylinder elects a dominating set for all nodes and then uses this set for projection and routing. The fourth algorithm Greedy-cluster-Cylinder is a combination between Greedy-Cylinder and Cluster-Cylinder. The authors evaluate their new algorithms and compare them with many classical known algorithms. The simulation outcomes show the substantial enhancement in delivery rate over other algorithms.


Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3887 ◽  
Author(s):  
Deep Kumar Bangotra ◽  
Yashwant Singh ◽  
Arvind Selwal ◽  
Nagesh Kumar ◽  
Pradeep Kumar Singh ◽  
...  

The lifetime of a node in wireless sensor networks (WSN) is directly responsible for the longevity of the wireless network. The routing of packets is the most energy-consuming activity for a sensor node. Thus, finding an energy-efficient routing strategy for transmission of packets becomes of utmost importance. The opportunistic routing (OR) protocol is one of the new routing protocol that promises reliability and energy efficiency during transmission of packets in wireless sensor networks (WSN). In this paper, we propose an intelligent opportunistic routing protocol (IOP) using a machine learning technique, to select a relay node from the list of potential forwarder nodes to achieve energy efficiency and reliability in the network. The proposed approach might have applications including e-healthcare services. As the proposed method might achieve reliability in the network because it can connect several healthcare network devices in a better way and good healthcare services might be offered. In addition to this, the proposed method saves energy, therefore, it helps the remote patient to connect with healthcare services for a longer duration with the integration of IoT services.


Sign in / Sign up

Export Citation Format

Share Document