Change Detection of a Subset of High-Dimensional Time Series Data in Sensor Networks

Author(s):  
Ido Nevat ◽  
Sai Ganesh Nagarajan ◽  
Pengfei Zhang
Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4112 ◽  
Author(s):  
Se-Min Lim ◽  
Hyeong-Cheol Oh ◽  
Jaein Kim ◽  
Juwon Lee ◽  
Jooyoung Park

Recently, wearable devices have become a prominent health care application domain by incorporating a growing number of sensors and adopting smart machine learning technologies. One closely related topic is the strategy of combining the wearable device technology with skill assessment, which can be used in wearable device apps for coaching and/or personal training. Particularly pertinent to skill assessment based on high-dimensional time series data from wearable sensors is classifying whether a player is an expert or a beginner, which skills the player is exercising, and extracting some low-dimensional representations useful for coaching. In this paper, we present a deep learning-based coaching assistant method, which can provide useful information in supporting table tennis practice. Our method uses a combination of LSTM (Long short-term memory) with a deep state space model and probabilistic inference. More precisely, we use the expressive power of LSTM when handling high-dimensional time series data, and state space model and probabilistic inference to extract low-dimensional latent representations useful for coaching. Experimental results show that our method can yield promising results for characterizing high-dimensional time series patterns and for providing useful information when working with wearable IMU (Inertial measurement unit) sensors for table tennis coaching.


Author(s):  
Kamil Faber ◽  
Roberto Corizzo ◽  
Bartlomiej Sniezynski ◽  
Michael Baron ◽  
Nathalie Japkowicz

2013 ◽  
Vol 10 (80) ◽  
pp. 20120935 ◽  
Author(s):  
Abdullah Hamadeh ◽  
Brian Ingalls ◽  
Eduardo Sontag

The chemotaxis pathway of the bacterium Rhodobacter sphaeroides shares many similarities with that of Escherichia coli . It exhibits robust adaptation and has several homologues of the latter's chemotaxis proteins. Recent theoretical results have correctly predicted that the E. coli output behaviour is unchanged under scaling of its ligand input signal; this property is known as fold-change detection (FCD). In the light of recent experimental results suggesting that R. sphaeroides may also show FCD, we present theoretical assumptions on the R. sphaeroides chemosensory dynamics that can be shown to yield FCD behaviour. Furthermore, it is shown that these assumptions make FCD a property of this system that is robust to structural and parametric variations in the chemotaxis pathway, in agreement with experimental results. We construct and examine models of the full chemotaxis pathway that satisfy these assumptions and reproduce experimental time-series data from earlier studies. We then propose experiments in which models satisfying our theoretical assumptions predict robust FCD behaviour where earlier models do not. In this way, we illustrate how transient dynamic phenotypes such as FCD can be used for the purposes of discriminating between models that reproduce the same experimental time-series data.


Author(s):  
Supun Kamburugamuve ◽  
Pulasthi Wickramasinghe ◽  
Saliya Ekanayake ◽  
Chathuri Wimalasena ◽  
Milinda Pathirage ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Jingpei Dan ◽  
Weiren Shi ◽  
Fangyan Dong ◽  
Kaoru Hirota

A time series representation, piecewise trend approximation (PTA), is proposed to improve efficiency of time series data mining in high dimensional large databases. PTA represents time series in concise form while retaining main trends in original time series; the dimensionality of original data is therefore reduced, and the key features are maintained. Different from the representations that based on original data space, PTA transforms original data space into the feature space of ratio between any two consecutive data points in original time series, of which sign and magnitude indicate changing direction and degree of local trend, respectively. Based on the ratio-based feature space, segmentation is performed such that each two conjoint segments have different trends, and then the piecewise segments are approximated by the ratios between the first and last points within the segments. To validate the proposed PTA, it is compared with classical time series representations PAA and APCA on two classical datasets by applying the commonly used K-NN classification algorithm. For ControlChart dataset, PTA outperforms them by 3.55% and 2.33% higher classification accuracy and 8.94% and 7.07% higher for Mixed-BagShapes dataset, respectively. It is indicated that the proposed PTA is effective for high dimensional time series data mining.


Sign in / Sign up

Export Citation Format

Share Document