Visual tracking of deepwater animals using machine learning-controlled robotic underwater vehicles

Author(s):  
Kakani Katija ◽  
Paul L D Roberts ◽  
Joost Daniels ◽  
Alexandra Lapides ◽  
Kevin Barnard ◽  
...  
Robotica ◽  
2021 ◽  
pp. 1-15
Author(s):  
Chaoyu Sun ◽  
Zhaoliang Wan ◽  
Hai Huang ◽  
Guocheng Zhang ◽  
Xuan Bao ◽  
...  

SUMMARY Visual tracking is an essential building block for target tracking and capture of the underwater vehicles. On the basis of remotely autonomous control architecture, this paper has proposed an improved kernelized correlation filter (KCF) tracker and a novel fuzzy controller. The model is trained to learn an online correlation filter from a plenty of positive and negative training samples. In order to overcome the influence from occlusion, the improved KCF tracker has been designed with an added self-discrimination mechanism based on system confidence uncertainty. The novel fuzzy logic tracking controller can automatically generate and optimize fuzzy rules. Through Q-learning algorithm, the fuzzy rules are acquired through the estimating value of each state action pairs. An S surface based fitness function has been designed for the improvement of learning based particle swarm optimization. Tank and channel experiments have been carried out to verify the proposed tracker and controller through pipe tracking and target grasp on the basis of designed open frame underwater vehicle.


Author(s):  
Muhammad Rizwan Khokher ◽  
L. Richard Little ◽  
Geoffrey N Tuck ◽  
Daniel V. Smith ◽  
Maoying Qiao ◽  
...  

Electronic monitoring (EM) is increasingly used to monitor catch and bycatch in wild capture fisheries. EM video data is still manually reviewed and adds to on-going management costs. Computer vision, machine learning, and artificial intelligence-based systems are seen to be the next step in automating EM data workflows. Here we show some of the obstacles we have confronted, and approaches taken as we develop a system to automatically identify and count target and bycatch species using cameras deployed to an industry vessel. A Convolutional Neural Network was trained to detect and classify target and bycatch species groups, and a visual tracking system was developed to produce counts. The multiclass detector achieved a mean Average Precision of 53.42%. Based on the detection results, the visual tracking system provided automatic fish counts for the test video data. Automatic counts were within two standard deviations of the manual counts for the target species, and most times for the bycatch species. Unlike other recent attempts, weather and lighting conditions were largely controlled by mounting cameras under cover.


2020 ◽  
Vol 43 ◽  
Author(s):  
Myrthe Faber

Abstract Gilead et al. state that abstraction supports mental travel, and that mental travel critically relies on abstraction. I propose an important addition to this theoretical framework, namely that mental travel might also support abstraction. Specifically, I argue that spontaneous mental travel (mind wandering), much like data augmentation in machine learning, provides variability in mental content and context necessary for abstraction.


2020 ◽  
Author(s):  
Mohammed J. Zaki ◽  
Wagner Meira, Jr
Keyword(s):  

2020 ◽  
Author(s):  
Marc Peter Deisenroth ◽  
A. Aldo Faisal ◽  
Cheng Soon Ong
Keyword(s):  

Author(s):  
Lorenza Saitta ◽  
Attilio Giordana ◽  
Antoine Cornuejols

Author(s):  
Shai Shalev-Shwartz ◽  
Shai Ben-David
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document