Stabilizing fuzzy controller design for uncertain time-delay systems

Author(s):  
Han Antai ◽  
Chen Guoding ◽  
Yang Maying ◽  
Yu Li
2003 ◽  
Vol 12 (02) ◽  
pp. 117-137 ◽  
Author(s):  
Feng-Hsiag Hsiao ◽  
Wei-Ling Chiang

This paper deals with the problem of stability analysis and stabilization via Takagi-Sugeno (T-S) fuzzy models for nonlinear time-delay systems. First, Takagi-Sugeno (T-S) fuzzy models and some stability results are recalled. To design fuzzy controllers, nonlinear time-delay systems are represented by Takagi-Sugeno fuzzy models. The concept of parallel-distributed compensation (PDC) is employed to determine structures of fuzzy controllers from the T-S fuzzy models. LMI-based design problems are defined and employed to find feedback gains of fuzzy controller and common positive definite matrices P satisfying stability a delay-dependent stability criterion derived in terms of Lyapunov direct method. Based on the control scheme and this criterion, a fuzzy controller is then designed via the technique of PDC to stabilize the nonlinear time-delay system and the H∞ control performance is achieved in the mean time. Finally, the proposed controller design method is demonstrated through numerical simulations on the chaotic and resonant systems.


Sign in / Sign up

Export Citation Format

Share Document