MU-MIMO channel emulator with automatic channel sounding feedback for IEEE 802.11ac

Author(s):  
Tran Thi Thao Nguyen ◽  
Leonardo Lanante ◽  
Yuhei Nagao ◽  
Masayuki Kurosaki ◽  
Hiroshi Ochi
Author(s):  
Tran Thi Thao NGUYEN ◽  
Leonardo LANANTE ◽  
Yuhei NAGAO ◽  
Hiroshi OCHI

2020 ◽  
Vol 10 (1) ◽  
pp. 1-8
Author(s):  
Kentaro Saito ◽  
Ahmad Salaam Mirfananda ◽  
Jun-ichi Takada ◽  
Mitsuki Nakamura ◽  
Wataru Yamada ◽  
...  

The user traffic in the mobile communication area has rapidly increased owing to the widespread of smartphones and various cloud services. To handle the increasing traffic, in the fifth-generation mobile communication system (5G), the millimeter-wave multiple-input and multiple-output (MIMO) communication technology is under development. Because the MIMO transmission performance heavily depends on the radio propagation characteristics, various MIMO channel measurements are needed for the performance evaluation and system design. The accurate and efficient parameter estimation algorithm which estimates the propagation delays and angle of arrivals (AoA) of radio waves is also indispensable for the purpose. In this paper, we extended the joint delay and azimuth estimation (JADE) method based on multiple signal classification (MUSIC) algorithm. In our proposal, the drawback of the MUSIC that the performance degrades for the estimation of coherent waves was solved by applying the smoothing technique in the frequency domain. It also makes the antenna calibration simpler. We implemented the proposed algorithm for the channel sounding system in the 66 GHz band, which is one of the candidate frequency bands for the International Mobile Telecommunications (IMT) system and evaluated the effectiveness through the experiment in an anechoic chamber. The result showed that our proposed method can de-correlate the signal components of coherent waves, and improved the parameter estimation accuracy significantly. The root means square error (RMSE) of the propagation delay estimation was improved from 2.7 ns to 0.9 ns, and the RMSE of the AoA estimation was improved from 20.3 deg. to 7.2 deg. The results are expected to be utilized for the millimeter wave band MIMO channel modeling.


2013 ◽  
Vol 712-715 ◽  
pp. 1741-1745
Author(s):  
Hao Cai ◽  
Dan Ao Han

Based on the special correlation of antennas and the power delay profile (PDP) of the cluster model, six models of A-F have been established by the TGn task-group in total. On the basis of the new broadband wireless local area network (WLAN) standard--IEEE 802.11ac with larger bandwidth and multi-user requirements drawn up by the TGac task-group, in this paper, the IEEE 802.11ac channel model is set up by means of improving and simulating the indoor MIMO channel.


2020 ◽  
Vol 10 (12) ◽  
pp. 4161
Author(s):  
Qiuming Zhu ◽  
Wei Huang ◽  
Kai Mao ◽  
Weizhi Zhong ◽  
Boyu Hua ◽  
...  

In this paper, a discrete non-stationary multiple-input multiple-output (MIMO) channel model suitable for the fixed-point realization on the field-programmable gate array (FPGA) hardware platform is proposed. On this basis, we develop a flexible hardware architecture with configurable channel parameters and implement it on a non-stationary MIMO channel emulator in a single FPGA chip. In addition, an improved non-stationary channel emulation method is employed to guarantee accurate channel fading and phase, and the schemes of other key modules are also illustrated and implemented in a single FPGA chip. Hardware tests demonstrate that the output statistical properties of proposed channel emulator, i.e., the probability density function (PDF), cross-correlation function (CCF), Doppler power spectrum density (DPSD), and the power delay profile (PDP) agree well with the corresponding theoretical ones.


Author(s):  
Andreas Schwind ◽  
Philipp Berlt ◽  
Mario Lorenz ◽  
Christian Schneider ◽  
Matthias A. Hein

Sign in / Sign up

Export Citation Format

Share Document