Energy Efficient Multiband Cooperative Spectrum Sensing for Heterogeneous Cognitive Industrial Wireless Sensor Networks

Author(s):  
Chi Xu ◽  
Changqing Xia ◽  
Peng Zeng ◽  
Haibin Yu
2015 ◽  
Vol 7 (3) ◽  
pp. 140 ◽  
Author(s):  
Shaoyang Men ◽  
Pascal Chargé ◽  
Sébastien Pillement

Cooperative spectrum sensing (CSS) is able to effectively solve the hidden terminal, depth attenuation, multipath shadows and other issues which are not addressed by the single-user sensing. Therefore, it has attracted a large amount of interest and several CSS algorithms have been proposed. However, they are not specifically tailored for cognitive wireless sensor networks (CWSNs) where transmission reliability, power management and interference avoidance are critical issues. In this paper, we propose a robust and energy efficient CSS scheme in CWSNs. Firstly, taking into account the limited energy of sensor node, especially the mobile node, we introduce the nodes of the network into multiple clusters for the CSS in order to save energy consumed in reporting results and exchanging information and extend the lifetime of the network. Secondly, we consider that some cognitive nodes may not work as expected. Hence, facing the problem of faulty nodes in clusters, we propose an evaluation method which considers simultaneously the node reliability and the mutually supportive degree among different nodes to support adapted decisions. Finally, after removing the node of low credibility, the energy efficiency and reliability of each cluster are improved significantly. Simulation results allow to validate that the proposed method outperforms the state of the art in energy efficiency and detection reliability, even in presence of faulty nodes.


2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Zhuangbin Chen ◽  
Anfeng Liu ◽  
Zhetao Li ◽  
Young-June Choi ◽  
Hiroo Sekiya ◽  
...  

In smart Industrial Wireless Sensor Networks (IWSNs), sensor nodes usually adopt a programmable technology. These smart devices can obtain new or special functions by reprogramming: they upgrade their soft systems through receiving new version of program codes. If sensor nodes need to be upgraded, the sink node will propagate program code packets to them through “one-to-many” broadcasting, and therefore new capabilities can be obtained, forming the so-called Software Defined Network (SDN). However, due to the high volume of code packet, the constraint energy of sensor node, and the unreliable link quality of wireless network, rapidly broadcasting the code packets to all nodes in network can be a challenge issue. In this paper, a novel Energy-efficient Broadcast scheme with adjustable broadcasting radius is proposed aiming to improve the performance of network upgrade. In our scheme, the nonhotspots sensor nodes take full advantage of their residual energy caused in data collection period to improve the packet reception probability and reduce the broadcasting delay of code packet transmission by enlarging the broadcasting radius, that is, the transmitting power. The theoretical analyses and experimental results show that, compared with previous work, our approach can averagely reduce the Network Upgrade Delay (NUD) by 14.8%–45.2% and simultaneously increase the reliability without harming the lifetime of network.


Sign in / Sign up

Export Citation Format

Share Document