hidden terminal
Recently Published Documents


TOTAL DOCUMENTS

126
(FIVE YEARS 27)

H-INDEX

13
(FIVE YEARS 2)

Author(s):  
Krishan Kumar ◽  
Poonam

Wireless networking grows rapidly because of the human desires for mobility and for freedom from tethers, i.e., from physical connections to communication networks. Recent advances in wireless technology have equipped portable computers, such as notebook computers and personal digital assistants with wireless interfaces that allow networked communication even while a user is mobile. We will focus on a particular kind of wireless network: mobile ad hoc networks. A mobile ad hoc network is a self organizing and rapidly deployable network in which neither a wired backbone nor a centralized control exists. The network nodes communicate with one another over scarce wireless channels in a multi-hop fashion. The ad hoc network is adaptable to the highly dynamic topology resulted from the mobility of network nodes and the changing propagation conditions. Generally, protocols used at medium access and physical layers of ad hoc networks are similar to those used in infrastructure based wireless networks. It is a common practise in infrastructure based wireless networks to use pre-data exchange of control information to eliminate the hidden terminal" problem.


2021 ◽  
Author(s):  
Khalid Abdel Hafeez

The increase number of vehicles on roads and the immense number of fatal accidents they cause have driven the research and development of new generation technologies to help drivers travel more safely. One major cause of traffic accidents is that drivers cannot consistently respond to the changing road conditions appropriately. In fact, most accidents could be avoided if drivers could obtain and use relevant information of the traffic that is beyond their vision using wireless communications technology. Recently, the IEEE community adopted the IEEE 802.11p standard as a main technology for VANETs. To test the feasibility of this technology, most researchers use simulations to evaluate its new applications and protocols due to the prohibitive cost of implementing real VANET setup. Therefore, we first analyze VANET’s wireless channel analytically and by simulations to predict its most appropriate propagation model and the communication range that minimizes the impact of the hidden terminal problem. Second, we derive a new mobility model that takes into account the vehicle’s follow-on safety rule, to accurately derive the relationship between vehicle’s speed and network density. It is expected that broadcasting and multi hop communications will be dominant in VANETs safety applications and protocols. Therefore, a Network Topology p-Persistence (NTPP) scheme is proposed to alleviate the impact of the broadcast storm problem. NTPP is based on vehicles’ knowledge of their neighbors in their range and traffic parameters to reduce the channel contention, redundant re-broadcasts and message travel time and to increase the emergency message reception rate. We analyze the reliability of the IEEE 802.11p in VANETs safety and warning applications scope taking into consideration different factors. It is shown analytically and by extensive simulations that the current DSRC specifications may lead to undesirable performance under harsh vehicular environments. Therefore, a novel Distributed Multichannel and Mobility Aware Cluster-based MAC Protocol (DMCMAC) is proposed to alleviate the impact of the hidden terminal problem, increase the network capacity and reliability. Cluster heads in DMCMAC are elected and re-elected in a distributed manner according to their relative speed and distance from their cluster members. The high stability of DMCMAC results from its adaptability to drivers’ behavior on the road and its learning process to predict the future speed and position of all cluster members using the fuzzy logic inference system. The reliability of DMCMAC is analyzed and compared with other protocols. It is shown by simulations that DMCMAC has high stability, its performance exceeds other protocols and can achieve a timely and reliable delivery of emergency messages to their intended recipients which make it more suitable for VANETs. iv


2021 ◽  
Author(s):  
Khalid Abdel Hafeez

The increase number of vehicles on roads and the immense number of fatal accidents they cause have driven the research and development of new generation technologies to help drivers travel more safely. One major cause of traffic accidents is that drivers cannot consistently respond to the changing road conditions appropriately. In fact, most accidents could be avoided if drivers could obtain and use relevant information of the traffic that is beyond their vision using wireless communications technology. Recently, the IEEE community adopted the IEEE 802.11p standard as a main technology for VANETs. To test the feasibility of this technology, most researchers use simulations to evaluate its new applications and protocols due to the prohibitive cost of implementing real VANET setup. Therefore, we first analyze VANET’s wireless channel analytically and by simulations to predict its most appropriate propagation model and the communication range that minimizes the impact of the hidden terminal problem. Second, we derive a new mobility model that takes into account the vehicle’s follow-on safety rule, to accurately derive the relationship between vehicle’s speed and network density. It is expected that broadcasting and multi hop communications will be dominant in VANETs safety applications and protocols. Therefore, a Network Topology p-Persistence (NTPP) scheme is proposed to alleviate the impact of the broadcast storm problem. NTPP is based on vehicles’ knowledge of their neighbors in their range and traffic parameters to reduce the channel contention, redundant re-broadcasts and message travel time and to increase the emergency message reception rate. We analyze the reliability of the IEEE 802.11p in VANETs safety and warning applications scope taking into consideration different factors. It is shown analytically and by extensive simulations that the current DSRC specifications may lead to undesirable performance under harsh vehicular environments. Therefore, a novel Distributed Multichannel and Mobility Aware Cluster-based MAC Protocol (DMCMAC) is proposed to alleviate the impact of the hidden terminal problem, increase the network capacity and reliability. Cluster heads in DMCMAC are elected and re-elected in a distributed manner according to their relative speed and distance from their cluster members. The high stability of DMCMAC results from its adaptability to drivers’ behavior on the road and its learning process to predict the future speed and position of all cluster members using the fuzzy logic inference system. The reliability of DMCMAC is analyzed and compared with other protocols. It is shown by simulations that DMCMAC has high stability, its performance exceeds other protocols and can achieve a timely and reliable delivery of emergency messages to their intended recipients which make it more suitable for VANETs. iv


2021 ◽  
Author(s):  
Asif Akbar

Directional antennas have numerous advantages over traditional omnidirectional antennas, which include more spatial reuse, extended range, less interference, and less energy consumption. Directional antennas introduce deafness and new hidden terminal problems. Deafness may cause more collisions, and hidden terminal problems may result in more retransmissions, poor quality of service, more energy consumption, and less packet delivery ratio. Hence, it is important to design of an effective medium access protocol specifically for directional antennas in order to reap the benefits of directional antennas while managing deafness and hidden terminal problems, otherwise the challenges can adversely affect system performance. In wireless sensor networks, the sensors are battery powered with limited supply of energy. Therefore, energy efficient protocols and solutions are immensely important with the desired goal of extending the network lifetime longer than what is possible through the omnidirectional antennas. In this thesis, I have proposed an energy efficient scheduled directional medium access control protocol (DTRAMA) which is specially designed for the wireless sensor nodes which use directional antennas in wireless sensor networks. It is a traffic adaptive scheduled medium access protocol in which nodes create their transmission and sleep schedules on the basis of their traffic. Scheduled medium access for packet transmission is used to address the deafness and hidden terminal problems caused by the use of directional communication in contention based MAC protocols. Use of directional antenna reduces interference which indirectly improves packet delivery ratio by improving the signal to noise ratio and by reducing the packet error rate. DTRAMA is energy efficient: firstly because the nodes use directional data communication which requires lower node transmit power than the omnidirectional data communication for the same transmission range; and secondly, because the nodes schedule their sleep period to reduce idle listening and overhearing which improves energy efficiency. In DTRAMA, sleep schedule of the node is traffic adaptive which is essential to maximize the sleep period. The node, by using spatial reuse checks, reuses the wireless medium to the maximum extent to reap the spatial reuse benefits of the directional antenna. The nodes reduce their packet latency through spatial reuse. Through simulation and by using different topologies, I have compared the performance of DTRAMA with those of omnidirectional schedule MAC protocol (TRAMA) and contention based directional MAC protocol (DMAC), which clearly shows that DTRAMA outperforms TRAMA and DMAC in packet delivery ratio and outperforms TRAMA in terms of packet latency.


2021 ◽  
Author(s):  
Asif Akbar

Directional antennas have numerous advantages over traditional omnidirectional antennas, which include more spatial reuse, extended range, less interference, and less energy consumption. Directional antennas introduce deafness and new hidden terminal problems. Deafness may cause more collisions, and hidden terminal problems may result in more retransmissions, poor quality of service, more energy consumption, and less packet delivery ratio. Hence, it is important to design of an effective medium access protocol specifically for directional antennas in order to reap the benefits of directional antennas while managing deafness and hidden terminal problems, otherwise the challenges can adversely affect system performance. In wireless sensor networks, the sensors are battery powered with limited supply of energy. Therefore, energy efficient protocols and solutions are immensely important with the desired goal of extending the network lifetime longer than what is possible through the omnidirectional antennas. In this thesis, I have proposed an energy efficient scheduled directional medium access control protocol (DTRAMA) which is specially designed for the wireless sensor nodes which use directional antennas in wireless sensor networks. It is a traffic adaptive scheduled medium access protocol in which nodes create their transmission and sleep schedules on the basis of their traffic. Scheduled medium access for packet transmission is used to address the deafness and hidden terminal problems caused by the use of directional communication in contention based MAC protocols. Use of directional antenna reduces interference which indirectly improves packet delivery ratio by improving the signal to noise ratio and by reducing the packet error rate. DTRAMA is energy efficient: firstly because the nodes use directional data communication which requires lower node transmit power than the omnidirectional data communication for the same transmission range; and secondly, because the nodes schedule their sleep period to reduce idle listening and overhearing which improves energy efficiency. In DTRAMA, sleep schedule of the node is traffic adaptive which is essential to maximize the sleep period. The node, by using spatial reuse checks, reuses the wireless medium to the maximum extent to reap the spatial reuse benefits of the directional antenna. The nodes reduce their packet latency through spatial reuse. Through simulation and by using different topologies, I have compared the performance of DTRAMA with those of omnidirectional schedule MAC protocol (TRAMA) and contention based directional MAC protocol (DMAC), which clearly shows that DTRAMA outperforms TRAMA and DMAC in packet delivery ratio and outperforms TRAMA in terms of packet latency.


2021 ◽  
Vol 11 (10) ◽  
pp. 4440
Author(s):  
Youheng Tan ◽  
Xiaojun Jing

Cooperative spectrum sensing (CSS) is an important topic due to its capacity to solve the issue of the hidden terminal. However, the sensing performance of CSS is still poor, especially in low signal-to-noise ratio (SNR) situations. In this paper, convolutional neural networks (CNN) are considered to extract the features of the observed signal and, as a consequence, improve the sensing performance. More specifically, a novel two-dimensional dataset of the received signal is established and three classical CNN (LeNet, AlexNet and VGG-16)-based CSS schemes are trained and analyzed on the proposed dataset. In addition, sensing performance comparisons are made between the proposed CNN-based CSS schemes and the AND, OR, majority voting-based CSS schemes. The simulation results state that the sensing accuracy of the proposed schemes is greatly improved and the network depth helps with this.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 382
Author(s):  
Odilbek Urmonov ◽  
HyungWon Kim

IEEE 1609/802.11p standard obligates each vehicle to broadcast a periodic basic safety message (BSM). The BSM message comprises a positional and kinematic information of a transmitting vehicle. It also contains emergency information that is to be delivered to all the target receivers. In broadcast communication, however, existing carrier sense multiple access (CSMA) medium access control (MAC) protocol cannot guarantee a high reliability as it suffers from two chronic problems, namely, access collision and hidden terminal interference. To resolve these problems of CSMA MAC, we propose a novel enhancement algorithm called a neighbor association-based MAC (NA-MAC) protocol. NA-MAC utilizes a time division multiple access (TDMA) to distribute channel resource into short time-intervals called slots. Each slot is further divided into three parts to conduct channel sensing, slot acquisition, and data transmission. To avoid a duplicate slot allocation among multiple vehicles, NA-MAC introduces a three-way handshake process during slot acquisition. Our simulation results revealed that NA-MAC improved packet reception ratio (PRR) by 19% and successful transmission by 30% over the reference protocols. In addition, NA-MAC reduced the packet collisions by a factor of 4. Using the real on-board units (OBUs), we conducted an experiment where our protocol outperformed in terms of PRR and average transmission interval by 82% and 49%, respectively.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Arshed Ahmed ◽  
Muhammad Sajjad Khan ◽  
Noor Gul ◽  
Irfan Uddin ◽  
Su Min Kim ◽  
...  

In a cognitive radio (CR), opportunistic secondary users (SUs) periodically sense the primary user’s (PU’s) existence in the network. Spectrum sensing of a single SU is not precise due to wireless channels and hidden terminal issues. One promising solution is cooperative spectrum sensing (CSS) that allows multiple SUs’ cooperation to sense the PU’s activity. In CSS, the misdetection of the PU signal by the SU causes system inefficiency that increases the interference to the system. This paper introduces a new category of a malicious user (MU), i.e., a lazy malicious user (LMU) with two operating modes such as an awakened mode and sleeping mode. In the awakened mode, the LMU reports accurately the PU activity like other normal cooperative users, while in the sleeping mode, it randomly reports abnormal sensing data similar to an always yes malicious user (AYMU) or always no malicious user (ANMU). In this paper, statistical analysis is carried out to detect the behavior of different abnormal users and mitigate their harmful effects. Results are collected for the different hard combination schemes in the presence of the LMU and opposite categories of malicious users (OMUs). Simulation results collected for the error probability, detection probability, and false alarm at different levels of the signal-to-noise ratios (SNRs) and various contributions of the LMUs and OMUs confirmed that out of the many outlier detection tests, the median test performs better in MU detection by producing minimum error probability results in the CSS. The results are further compared by keeping minimum SNR values with the mean test, quartile test, Grubbs test, and generalized extreme studentized deviate (GESD) test. Similarly, performance gain of the median test is examined further separately in the AND, OR, and voting schemes that show minimum error probability results of the proposed test as compared with all other outlier detection tests in discarding abnormal sensing reports.


Sign in / Sign up

Export Citation Format

Share Document