Comparison of wired and wireless synchronization with clock drift compensation suited for U-TDoA localization

Author(s):  
Swen Leugner ◽  
Mathias Pelka ◽  
Horst Hellbruck
2017 ◽  
Vol 9 (11) ◽  
pp. 1087 ◽  
Author(s):  
Mario Azcueta ◽  
Stefano Tebaldini

Chemosensors ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 78
Author(s):  
Jianhua Cao ◽  
Tao Liu ◽  
Jianjun Chen ◽  
Tao Yang ◽  
Xiuxiu Zhu ◽  
...  

Gas sensor drift is an important issue of electronic nose (E-nose) systems. This study follows this concern under the condition that requires an instant drift compensation with massive online E-nose responses. Recently, an active learning paradigm has been introduced to such condition. However, it does not consider the “noisy label” problem caused by the unreliability of its labeling process in real applications. Thus, we have proposed a class-label appraisal methodology and associated active learning framework to assess and correct the noisy labels. To evaluate the performance of the proposed methodologies, we used the datasets from two E-nose systems. The experimental results show that the proposed methodology helps the E-noses achieve higher accuracy with lower computation than the reference methods do. Finally, we can conclude that the proposed class-label appraisal mechanism is an effective means of enhancing the robustness of active learning-based E-nose drift compensation.


Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 955
Author(s):  
Jaël Pauwels ◽  
Guy Van der Sande ◽  
Guy Verschaffelt ◽  
Serge Massar

We present a method to improve the performance of a reservoir computer by keeping the reservoir fixed and increasing the number of output neurons. The additional neurons are nonlinear functions, typically chosen randomly, of the reservoir neurons. We demonstrate the interest of this expanded output layer on an experimental opto-electronic system subject to slow parameter drift which results in loss of performance. We can partially recover the lost performance by using the output layer expansion. The proposed scheme allows for a trade-off between performance gains and system complexity.


Author(s):  
Sihao Zhao ◽  
Xiao-Ping Zhang ◽  
Xiaowei Cui ◽  
Mingquan Lu
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document