Using discrete event simulation and soft systems methodology for optimizing patient flow and resource utilization at the surgical unit of radiumhospitalet in Oslo, NORWAY

Author(s):  
Lene Berge Holm ◽  
Tone Bjornenak ◽  
Guri Galtung Kjaeserud ◽  
Harald Noddeland

The pluralistic approach in today's world needs combining multiple methods, whether hard or soft, into a multi-methodology intervention. The methodologies can be combined, sometimes from several different paradigms, including hard and soft, in the form of a multi-methodology so that the hard paradigms are positivistic and see the organizational environment as objective, while the nature of soft paradigms is interpretive. In this chapter, the combination of methodologies has been examined using soft systems methodologies (SSM) and simulation methodologies including discrete event simulation (DES), system dynamics (SD), and agent-based modeling (ABM). Also, using the ontological, epistemological, and methodological assumptions underlying the respective paradigms, the difference between SD, ABM, SSM; a synthesis of SSM and SD generally known as soft system dynamics methodology (SSDM); and a promising integration of SSM and ABM referred to as soft systems agent-based methodology (SSABM) have been proven.


Processes ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 660
Author(s):  
Félix Badilla-Murillo ◽  
Bernal Vargas-Vargas ◽  
Oscar Víquez-Acuña ◽  
Justo García-Sanz-Calcedo

The installed productive capacity of a healthcare center’s equipment limits the efficient use of its resources. This paper, therefore, analyzes the installed productive capacity of a hospital angiography room and how to optimize patient demand. For this purpose, a Discrete Event Simulation (DES) model based on historical variables from the current system was created using computer software. The authors analyzed 2044 procedures performed between 2014 and 2015 in a hospital in San José, Costa Rica. The model was statistically validated to determine that it does not significantly differ from the current system, considering the DMAIC stages for continuous process improvement. In the current scenario, resource utilization is 0.99, and the waiting list increases every month. The results showed that the current capacity of the service could be doubled, and that resource utilization could be reduced to 0.64 and waiting times by 94%. An increase in service efficiency could be achieved by shortening maximum waiting times from 6.75 days to 3.70 h. DES simulation, therefore, allows optimizing of the use of healthcare systems’ resources and hospital management.


Author(s):  
Aregawi yemane Meresa ◽  
Hagazi Abrha Heniey ◽  
Kidane Gidey

This paper deals with the service performance analysis and improvement using discrete event simulation has been used. The simulation of the heath care has been done by arena master development 14-version software. The performance measurement for this study are patients output, service rate, service efficiency and it is directly related to waiting time of patients in each service station, work in progress, resource utilization.Simulation model was building for Bahir Dar clinic and then, prepared the proposed model for the system. Based on the simulation model run result, the output of the existing healthcare service system is low due to presence of bottlenecks on the service system. Moreover, the station with the largest queue and high resource utilization are identified as a bottleneck. The bottlenecks, which have identified are reduced by using reassigning the existing resources and add new resources and merging the similar services, which has under low resource utilization (nurses). Finally, the researchers have proposed a developed model from different scenarios. Moreover, the best scenario is developed by combining scenario 2 and 3. And then, service efficiency of the healthcare has increased by 9.86 percent, the work in progress (WIP) are reduced by 3 patients from the system and the service capacity of the system is increased 34 to 40 patients per day due to the reduction of bottleneck stations.


Sign in / Sign up

Export Citation Format

Share Document