scholarly journals Phasin interactome reveals the interplay of PhaF with the polyhydroxyalkanoate transcriptional regulatory protein PhaD in Pseudomonas putida

2020 ◽  
Vol 22 (9) ◽  
pp. 3922-3936 ◽  
Author(s):  
Natalia A. Tarazona ◽  
Ana M. Hernández‐Arriaga ◽  
Ryan Kniewel ◽  
M. Auxiliadora Prieto
Development ◽  
1996 ◽  
Vol 122 (1) ◽  
pp. 23-30 ◽  
Author(s):  
J. Wallin ◽  
H. Eibel ◽  
A. Neubuser ◽  
J. Wilting ◽  
H. Koseki ◽  
...  

Pax1 is a transcriptional regulatory protein expressed during mouse embryogenesis and has been shown to have an important function in vertebral column development. Expression of Pax1 mRNA in the embryonic thymus has been reported previously. Here we show that Pax1 protein expression in thymic epithelial cells can be detected throughout thymic development and in the adult. Expression starts in the early endodermal epithelium lining the foregut region and includes the epithelium of the third pharyngeal pouch, a structure giving rise to part of the thymus epithelium. In early stages of thymus development a large proportion of thymus cells expresses Pax1. With increasing age, the proportion of Pax1-expressing cells is reduced and in the adult mouse only a small fraction of cortical thymic stromal cells retains strong Pax1 expression. Expression of Pax1 in thymus epithelium is necessary for establishing the thymus microenvironment required for normal T cell maturation. Mutations in the Pax-1 gene in undulated mice affect not only the total size of the thymus but also the maturation of thymocytes. The number of thymocytes is reduced about 2- to 5-fold, affecting mainly the CD4+8+ immature and CD4+ mature thymocyte subsets. The expression levels of major thymocyte surface markers remains unchanged with the exception of Thy-1 which was found to be expressed at 3- to 4-fold higher levels.


2005 ◽  
Vol 187 (11) ◽  
pp. 3678-3686 ◽  
Author(s):  
Ana Ruiz-Manzano ◽  
Luis Yuste ◽  
Fernando Rojo

ABSTRACT The global regulatory protein Crc is involved in the repression of several catabolic pathways for sugars, hydrocarbons, and nitrogenated and aromatic compounds in Pseudomonas putida and Pseudomonas aeruginosa when other preferred carbon sources are present in the culture medium (catabolite repression), therefore modulating carbon metabolism. We have analyzed whether the levels or the activity of Crc is regulated. Crc activity was followed by its ability to inhibit the induction by alkanes of the P. putida OCT plasmid alkane degradation pathway when cells grow in a complete medium, where the effect of Crc is very strong. The abundance of crc transcripts and the amounts of Crc protein were higher under repressing conditions than under nonrepressing conditions. The presence of crc on a high-copy-number plasmid considerably increased Crc levels, but this impaired its ability to inhibit the alkane degradation pathway. Crc shows similarity to a family of nucleases that have highly conserved residues at their catalytic sites. Mutation of the corresponding residues in Crc (Asp220 and His246) led to proteins that can inhibit induction of the alkane degradation pathway when present at normal or elevated levels in the cell. Repression by these mutant proteins occurred only under repressing conditions. These results suggest that both the amounts and the activity of Crc are modulated and support previous proposals that Crc may form part of a signal transduction pathway. Furthermore, the activity of the mutant proteins suggests that Crc is not a nuclease.


Author(s):  
Xiantu Ou ◽  
Weibiao Lv

It is universally acknowledged that a large number of immune cells, as well as inflammatory factors, regulatory factors and metabolites, accumulate in the tumor microenvironment to jointly promote tumor escape, development and metastasis. Hypoxia is one of the characteristics in tumor microenvironment and is a common phenomenon in all solid tumors. In tumor hypoxia response, there is a key regulator called HIF-1a, which is a key transcriptional regulatory protein that regulates many critical genes. In this paper, the effects of hypoxia on glucose metabolism of tumor cells, myeloid-derived suppressor cells and T cells in tumor microenvironment were reviewed, and the interaction among the three was also described.


1999 ◽  
Vol 27 (13) ◽  
pp. 2646-2654 ◽  
Author(s):  
O. I. Ornatsky ◽  
D. M. Cox ◽  
P. Tangirala ◽  
J. J. Andreucci ◽  
Z. A. Quinn ◽  
...  

2008 ◽  
Vol 191 (1) ◽  
pp. 287-297 ◽  
Author(s):  
Jason P. Folster ◽  
Paul J. T. Johnson ◽  
Lydgia Jackson ◽  
Vijaya Dhulipali ◽  
David W. Dyer ◽  
...  

ABSTRACT The MtrR transcriptional-regulatory protein is known to repress transcription of the mtrCDE operon, which encodes a multidrug efflux pump possessed by Neisseria gonorrhoeae that is important in the ability of gonococci to resist certain hydrophobic antibiotics, detergents, dyes, and host-derived antimicrobials. In order to determine whether MtrR can exert regulatory action on other gonococcal genes, we performed a whole-genome microarray analysis using total RNA extracted from actively growing broth cultures of isogenic MtrR-positive and MtrR-negative gonococci. We determined that, at a minimum, 69 genes are directly or indirectly subject to MtrR control, with 47 being MtrR repressed and 22 being MtrR activated. rpoH, which encodes the general stress response sigma factor RpoH (sigma 32), was found by DNA-binding studies to be directly repressed by MtrR, as it was found to bind to a DNA sequence upstream of rpoH that included sites within the rpoH promoter. MtrR also repressed the expression of certain RpoH-regulated genes, but this regulation was likely indirect and a reflection of MtrR control of rpoH expression. Inducible expression of MtrR was found to repress rpoH expression and to increase gonococcal susceptibility to hydrogen peroxide (H2O2) and an antibiotic (erythromycin) recognized by the MtrC-MtrD-MtrE efflux pump system. We propose that, apart from its ability to control the expression of the mtrCDE-encoded efflux pump operon and, as a consequence, levels of gonococcal resistance to host antimicrobials (e.g., antimicrobial peptides) recognized by the efflux pump, the ability of MtrR to regulate the expression levels of rpoH and RpoH-regulated genes also modulates levels of gonococcal susceptibility to H2O2.


Sign in / Sign up

Export Citation Format

Share Document