Lithic cyanobacterial communities in the polyextreme Sahara Desert: implications for the search for the limits of life

Author(s):  
Smail Mehda ◽  
M. Ángeles Muñoz‐Martín ◽  
Mabrouka Oustani ◽  
Baelhadj Hamdi‐Aïssa ◽  
Elvira Perona ◽  
...  
Keyword(s):  
1912 ◽  
Vol 107 (6) ◽  
pp. 114-114 ◽  
Author(s):  
G. A. Thompson
Keyword(s):  

2017 ◽  
Author(s):  
Steven M. Smith ◽  
◽  
Salim Boulemia ◽  
Messaoud Zouai ◽  
Abdallah Moussaoui ◽  
...  
Keyword(s):  

2018 ◽  
Vol 31 (9) ◽  
pp. 3349-3370 ◽  
Author(s):  
Natalie Thomas ◽  
Sumant Nigam

Twentieth-century trends in seasonal temperature and precipitation over the African continent are analyzed from observational datasets and historical climate simulations. Given the agricultural economy of the continent, a seasonal perspective is adopted as it is more pertinent than an annual-average one, which can mask offsetting but agriculturally sensitive seasonal hydroclimate variations. Examination of linear trends in seasonal surface air temperature (SAT) shows that heat stress has increased in several regions, including Sudan and northern Africa where the largest SAT trends occur in the warm season. Broadly speaking, the northern continent has warmed more than the southern one in all seasons. Precipitation trends are varied but notable declining trends are found in the countries along the Gulf of Guinea, especially in the source region of the Niger River in West Africa, and in the Congo River basin. Rainfall over the African Great Lakes—one of the largest freshwater repositories—has, however, increased. It is shown that the Sahara Desert has expanded significantly over the twentieth century, by 11%–18% depending on the season, and by 10% when defined using annual rainfall. The expansion rate is sensitively dependent on the analysis period in view of the multidecadal periods of desert expansion (including from the drying of the Sahel in the 1950s–80s) and contraction in the 1902–2013 record, and the stability of the rain gauge network. The desert expanded southward in summer, reflecting retreat of the northern edge of the Sahel rainfall belt, and to the north in winter, indicating potential impact of the widening of the tropics. Specific mechanisms for the expansion are investigated. Finally, this observational analysis is used to evaluate the state-of-the-art climate simulations from a comparison of the twentieth-century hydroclimate trends. The evaluation shows that modeling regional hydroclimate change over the African continent remains challenging, warranting caution in the development of adaptation and mitigation strategies.


2021 ◽  
Vol 34 (10) ◽  
pp. 4043-4068
Author(s):  
Liming Zhou ◽  
Yuhong Tian ◽  
Nan Wei ◽  
Shu-peng Ho ◽  
Jing Li

AbstractTurbulent mixing in the planetary boundary layer (PBL) governs the vertical exchange of heat, moisture, momentum, trace gases, and aerosols in the surface–atmosphere interface. The PBL height (PBLH) represents the maximum height of the free atmosphere that is directly influenced by Earth’s surface. This study uses a multidata synthesis approach from an ensemble of multiple global datasets of radiosonde observations, reanalysis products, and climate model simulations to examine the spatial patterns of long-term PBLH trends over land between 60°S and 60°N for the period 1979–2019. By considering both the sign and statistical significance of trends, we identify large-scale regions where the change signal is robust and consistent to increase our confidence in the obtained results. Despite differences in the magnitude and sign of PBLH trends over many areas, all datasets reveal a consensus on increasing PBLH over the enormous and very dry Sahara Desert and Arabian Peninsula (SDAP) and declining PBLH in India. At the global scale, the changes in PBLH are significantly correlated positively with the changes in surface heating and negatively with the changes in surface moisture, consistent with theory and previous findings in the literature. The rising PBLH is in good agreement with increasing sensible heat and surface temperature and decreasing relative humidity over the SDAP associated with desert amplification, while the declining PBLH resonates well with increasing relative humidity and latent heat and decreasing sensible heat and surface warming in India. The PBLH changes agree with radiosonde soundings over the SDAP but cannot be validated over India due to lack of good-quality radiosonde observations.


Sign in / Sign up

Export Citation Format

Share Document