Monitoring the Near-surface Urban Heat Island in Beijing, China by Satellite Remote Sensing

2014 ◽  
Vol 53 (1) ◽  
pp. 16-25 ◽  
Author(s):  
YONGMING XU ◽  
YONGHONG LIU
2021 ◽  
Author(s):  
Emily Elhacham ◽  
Pinhas Alpert

<p>Over a billion people currently live in coastal areas, and coastal urbanization is rapidly growing worldwide. Here, we explore the impact of an extreme and rapid coastal urbanization on near-surface climatic variables, based on MODIS data, Landsat and some in-situ observations. We study Dubai, one of the fastest growing cities in the world over the last two decades. Dubai's urbanization centers along its coastline – in land, massive skyscrapers and infrastructure have been built, while in sea, just nearby, unique artificial islands have been constructed.</p><p>Studying the coastline during the years of intense urbanization (2001-2014), we show that the coastline exhibits surface urban heat island characteristics, where the urban center experiences higher temperatures, by as much as 2.0°C and more, compared to the adjacent less urbanized zones. During development, the coastal surface urban heat island has nearly doubled its size, expanding towards the newly developed areas. This newly developed zone also exhibited the largest temperature trend along the coast, exceeding 0.1°C/year on average.</p><p>Overall, we found that over land, temperature increases go along with albedo decreases, while in sea, surface temperature decreases and albedo increases were observed particularly over the artificial islands. These trends in land and sea temperatures affect the land-sea temperature gradient which influences the breeze intensity. The above findings, along with the increasing relative humidity shown, directly affect the local population and ecosystem and add additional burden to this area, which is already considered as one of the warmest in the world and a climate change 'hot spot'.</p><p> </p><p><strong>References:</strong></p><p>E. Elhacham and P. Alpert, "Impact of coastline-intensive anthropogenic activities on the atmosphere from moderate resolution imaging spectroradiometer (MODIS) data in Dubai (2001–2014)", <em>Earth’s Future</em>, 4, 2016. https://doi.org/10.1002/2015EF000325</p><p>E. Elhacham and P. Alpert, "Temperature patterns along an arid coastline experiencing extreme and rapid urbanization, case study: Dubai", submitted.</p>


2012 ◽  
Vol 34 (9-10) ◽  
pp. 3177-3192 ◽  
Author(s):  
José A. Sobrino ◽  
Rosa Oltra-Carrió ◽  
Guillem Sòria ◽  
Juan Carlos Jiménez-Muñoz ◽  
Belén Franch ◽  
...  

2021 ◽  
Vol 187 ◽  
pp. 107390
Author(s):  
Garegin Tepanosyan ◽  
Vahagn Muradyan ◽  
Azatuhi Hovsepyan ◽  
Gleb Pinigin ◽  
Andrey Medvedev ◽  
...  

2011 ◽  
Vol 6 (1) ◽  
pp. 27-34 ◽  
Author(s):  
R. Hamdi ◽  
H. Van de Vyver

Abstract. In this letter, the Brussels's urban heat island (UHI) effect on the near-surface air temperature time series of Uccle (the national suburban recording station of the Royal Meteorological Institute of Belgium) was estimated between 1955 and 2006 during the summer months. The UHI of Brussels was estimated using both ground-based weather stations and remote sensing imagery combined with a land surface scheme that includes a state-of-the-art urban parameterization, the Town Energy Balance scheme. Analysis of urban warming based on the remote sensing method reveals that the urban bias on minimum air temperature is rising at a higher rate, 2.5 times (2.85 ground-based observed) more, than on maximum temperature, with a linear trend of 0.15 °C (0.19 °C ground-based observed) and 0.06 °C (0.06 °C ground-based observed) per decade respectively. The summer-mean urban bias on the mean air temperature is 0.8 °C (0.9 °C ground-based observed). The results based on remote sensing imagery are compatible with estimates of urban warming based on weather stations. Therefore, the technique presented in this work is a useful tool in estimating the urban heat island contamination in long time series, countering the drawbacks of an ground-observational approach.


Sign in / Sign up

Export Citation Format

Share Document