DNA Barcodes indicate members of the Anopheles fluviatilis (Diptera: Culicidae) species complex to be conspecific in India

2013 ◽  
Vol 13 (3) ◽  
pp. 354-361 ◽  
Author(s):  
N. Pradeep kumar ◽  
N. Krishnamoorthy ◽  
S. S. Sahu ◽  
A. R. Rajavel ◽  
S. Sabesan ◽  
...  
2019 ◽  
Vol 13 (4) ◽  
pp. 435-449 ◽  
Author(s):  
Vladimir A. Lukhtanov ◽  
Yaroslavna Iashenkova

Chromosomal data are important for taxonomists, cytogeneticists and evolutionary biologists; however, the value of these data decreases sharply if they are obtained for individuals with inaccurate species identification or unclear species identity. To avoid this problem, here we suggest linking each karyotyped sample with its DNA barcode, photograph and precise geographic data, providing an opportunity for unambiguous identification of described taxa and for delimitation of undescribed species. Using this approach, we present new data on chromosome number diversity in neotropical butterflies of the subfamily Biblidinae (genus Vila Kirby, 1871) and the tribe Ithomiini (genera Oleria Hübner, 1816, Ithomia Hübner, 1816, Godyris Boisduval, 1870, Hypothyris Hübner, 1821, Napeogenes Bates, 1862, Pseudoscada Godman et Salvin, 1879 and Hyposcada Godman et Salvin, 1879). Combining new and previously published data we show that the species complex Oleria onega (Hewitson, [1852]) includes three discrete chromosomal clusters (with haploid chromosome numbers n = 15, n = 22 and n = 30) and at least four DNA barcode clusters. Then we discuss how the incomplete connection between these chromosomal and molecular data (karyotypes and DNA barcodes were obtained for different sets of individuals) complicates the taxonomic interpretation of the discovered clusters.


Zootaxa ◽  
2009 ◽  
Vol 2239 (1) ◽  
pp. 1-21 ◽  
Author(s):  
AXEL HAUSMANN ◽  
PAUL D. N. HEBERT ◽  
ANDREW MITCHELL ◽  
RODOLPHE ROUGERIE ◽  
MANFRED SOMMERER ◽  
...  

The assembly of a DNA barcode library for Australian Lepidoptera revealed that Oenochroma vinaria Guenée, 1858, as currently understood, is actually a mix of two different species. By analyzing DNA barcodes from recently collected specimens and the 150 year-old female lectotype of O. vinaria, we propose a reliable assignment of the name vinaria to one of these two species. A lectotype is designated for Monoctenia decora, a confirmed synonym of O. vinaria, and a new species, Oenochroma barcodificata sp. nov., is described. This species is only known from Tasmania and New South Wales; its biology and immature stages are described in detail.


Zootaxa ◽  
2019 ◽  
Vol 4678 (1) ◽  
pp. 1-75
Author(s):  
JIA HUANG ◽  
LU GONG ◽  
SHUN-CHERN TSAUR ◽  
LIN ZHU ◽  
KEYING AN ◽  
...  

A total of 50 (43 known and seven new) species in the subgenus Phortica (sensu stricto) were surveyed and (re)described from China: P. bicornuta (Chen & Toda, 1997); P. bipartita (Toda & Peng, 1992); P. biprotrusa (Chen & Toda, 1998); P. cardua (Okada, 1977); P. chi (Toda & Sidorenko, 1996); P. conifera (Okada, 1977); P. eparmata (Okada, 1977); P. eugamma (Toda & Peng, 1990); P. excrescentiosa (Toda & Peng, 1990); P. fangae (Máca, 1993); P. flexuosa (Zhang & Gan, 1986); P. foliata (Chen & Toda, 1997); P. gamma (Toda & Peng, 1990); P. gigas (Okada, 1977); P. glabtabula Chen & Gao, 2005; P. hainanensis (Chen & Toda, 1998); P. hongae (Máca, 1993); P. huazhii Cheng & Chen, 2008; P. iota (Toda & Sidorenko, 1996); P. jadete Zhu, Cao & Chen, 2018; P. kappa (Máca, 1977); P. lambda (Toda & Peng, 1990); P. latifoliacea Chen & Watabe, 2008; P. magna (Okada, 1960); P. okadai (Máca, 1977); P. omega (Okada, 1977); P. orientalis (Hendel, 1914); P. pangi Chen & Wen, 2005; P. paramagna (Okada, 1971); P. perforcipata (Máca & Lin, 1993); P. pi (Toda & Peng, 1990); P. protrusa (Zhang & Shi, 1997); P. pseudopi (Toda & Peng, 1990); P. pseudotau (Toda & Peng, 1990); P. psi (Zhang & Gan, 1986); P. rhagolobos Chen & Gao, 2008; P. saeta (Zhang & Gan, 1986); P. setitabula Chen & Gao, 2005; P. subradiata (Okada, 1977); P. tau (Toda & Peng, 1990); P. uncinata Chen & Gao, 2005; P. unipetala Chen & Wen, 2005; P. allomega Gong & Chen, sp. nov.; P. archikappa Gong & Chen, sp. nov.; P. dianzangensis Gong & Chen, sp. nov.; P. imbacilia Gong & Chen, sp. nov.; P. liukuni Gong & Chen, sp. nov.; P. tibeta Gong & Chen, sp. nov.; and P. xianfui Gong & Chen, sp. nov. In addition, seven new synonyms were recognized: P. acongruens (Zhang & Shi, 1997), syn. nov.; P. antillaria (Chen & Toda, 1997), syn. nov.; P. kukuanensis Máca, 2003, syn. nov.; P. linae (Máca & Chen, 1993), syn. nov.; P. shillongensis (Singh & Gupta, 1979), syn. nov.; P. takadai (Okada, 1977), syn. nov.; and P. watanabei (Máca & Lin, 1993), syn. nov. A key to all Asian species (except for the eparmata species complex) of this subgenus was provided. All currently available DNA barcode (partial mitochondrial cytochrome c oxidase subunit I (COI) gene) sequences of this subgenus (217 sequences of 54 species) are employed in a molecular analysis using different species delimitation methods. The results indicate that approximately 68.5% (37 of 54 spp.) of Phortica (s. str.) species could be clearly distinguished from closely related morphospecies or cryptic species. 


2021 ◽  
Vol 69 (1) ◽  
pp. 11-21
Author(s):  
Vladimir A. Lukhtanov ◽  
Elena A. Pazhenkova

The genus Hyponephele includes about 40 species distributed throughout the southern part of the Palaearctic area. Within this genus, the taxa of the H. lycaon – H. lupina species complex are similar with respect to the wing pattern and genitalia structure. Here we revise this group using analysis of butterfly morphology, DNA barcodes, and study of the type material. We show that, with a few exceptions, the species in this group are allopatric in distribution. Allopatry in combination with phenotypic similarity may be theoretically interpreted as evidence for the conspecifity of these taxa. Here we falsify this hypothesis by using DNA barcode analysis. We show that the species of this complex are genetically very distant and cannot be combined together as a polytypic species. We also demonstrate that H. lupina consists of two deeply diverged allopatric clades, H. lupina s. s. and H. mauritanica comb. & stat. nov. The barcode p-distance between these taxa (3.4-4.9%) is significantly higher than the generally accepted 'standard' minimum interspecific divergence (2.0-3.0% ) threshold. These two clades can also be distinguished by the color of the upperside of the wing in males (brown with conspicuous golden reflection in H. lupina ; dark brown without golden reflection in H. mauritanica) and by details in male genitalia and male androconia structures. Syntypes of Hyponephele sifanica, H. cheena cheena, H. cheena iskander, and H. cheena kashmirica are studied and figured.


Author(s):  
Boyan Zlatkov ◽  
Peter Huemer

Allopatric alpine populations of Phtheochroa frigidana s. lat. (Lepidoptera, Tortricidae) are reviewed. In addition to traditional diagnostic characters of external morphology, the genitalia structures of everted vesicae in male genitalia and DNA barcodes are analysed. This new approach supports the existence of five rather than two species in Europe: Phtheochroa schawerdae (Rebel, 1908) comb. nov. (Dinaric Mts, Rila Mts, Pirin Mts) = P. drenowskyi (Rebel, 1916) syn. nov.; P. alpinana sp. nov. (SW Alps); P. apenninana sp. nov. (Apennines); P. frigidana (Guenée, 1845) stat. rev. (Pyrenees) = P. flavidana (Guenée, 1845) = P. sulphurana (Guenée, 1845) = P. andorrana (Millière, 1865); P. cantabriana sp. nov. (Cantabrian Mts). In order to stabilize the nomenclature, a neotype for Eupoecilia frigidana is designated.


2020 ◽  
Vol 152 (5) ◽  
pp. 663-701
Author(s):  
Juliana Soroka ◽  
Andrew M.R. Bennett ◽  
Cezarina Kora ◽  
Marla D. Schwarzfeld

AbstractThis study recorded distribution and size of alfalfa weevil (Hypera postica (Gyllenhal); Coleoptera: Curculionidae) populations in Saskatchewan, Canada, from 2001 to 2014. The spread of alfalfa weevil across the province, originally southwest to southeast, was northward and westward during this time. By 2014, only northwestern and west central areas remained relatively alfalfa weevil free. From a minor pest in 2001, the alfalfa weevil increased to be the principal insect pest of alfalfa (Medicago sativa Linnaeus; Fabaceae) in 2014. The parasitoid Bathyplectes curculionis (Thomson) (Hymenoptera: Ichneumonidae) had a similar distribution. Other parasitoids collected included Oomyzus incertus (Ratzeburg) (Hymenoptera: Eulophidae) and Microctonus colesi Drea (Hymenoptera: Braconidae). Conservation of these parasitoids is an important step in maximising their effectiveness as alfalfa weevil biocontrol agents. Molecular sequencing of the DNA barcoding region of specimens identified morphologically as B. curculionis indicated moderately high levels of sequence divergence among specimens (up to 5.8%); however, interspecific genetic variation between other species of Bathyplectes Förster was also high. Therefore, we conclude that B. curculionis was the only Bathyplectes species collected in our study. An illustrated key to the described species of Bathyplectes in North America is provided, as well as DNA barcodes of most species, including five distinct barcodes in the Bathyplectes curculionis–B. exiguus (Gravenhorst) species complex.


Zootaxa ◽  
2019 ◽  
Vol 4624 (3) ◽  
pp. 442-450
Author(s):  
JUKKA TABELL ◽  
MARKO MUTANEN ◽  
PASI SIHVONEN

Three new Pleurota species (Oecophoridae: Pleurotinae) from Morocco, which form a species complex, are described: P. variocolor Tabell, sp. nov., P. azrouensis Tabell, sp. nov., and P. ternaria Tabell, sp. nov. Species are diagnosable by wing pattern and they have distinct genetic divergences in DNA barcodes, while genitalia structures are uniform and less informative. DNA barcodes of the new species are compared with those of all other Pleurotinae available in BOLD database. Each of the newly described species has a unique BIN (Barcode Index Number). Adult males and females, and their genitalia, are illustrated. Life histories of new species are unknown, but two of those were collected during daytime. 


2020 ◽  
Vol 57 (5) ◽  
pp. 1675-1678 ◽  
Author(s):  
Van Lun Low ◽  
Wichai Srisuka ◽  
Atiporn Saeung ◽  
Tiong Kai Tan ◽  
Zubaidah Ya’cob ◽  
...  

Abstract Previous studies suggested the presence of species complex in the so-called Simulium asakoae Takaoka & Davies (Diptera: Simuliidae) in Thailand due to its high morphological variability and genetic divergence. To investigate whether the true S. asakoae is present in Thailand, we performed a detailed morphological identification of S. asakoae and compared its DNA barcodes with the morphospecies S. asakoae from Myanmar and the typical S. asakoae from Malaysia. Phylogenetic analysis revealed the Thai materials analyzed in this study were indeed genetically similar with those from Myanmar and Malaysia, though genetic distances 0–2.27% were observed. We tentatively regard this divergence as intraspecific variation, and the automatic barcode gap discovery analysis further supports them as a single species.


Zootaxa ◽  
2021 ◽  
Vol 4927 (2) ◽  
pp. 151-196
Author(s):  
JUKKA SALMELA ◽  
OSKARI HÄRMÄ ◽  
DEREK J. TAYLOR

Chaoborus flavicans (Meigen) is a widespread and much studied lacustrine phantom midge. As larvae, these insects are important aquatic predators. Based on the available type material, morphology of immature stages and adults, their aquatic habitat, and DNA barcodes, C. flavicans is shown to be a composite of at least four species, with three of these named here. Chaoborus flavicans is primarily a lake-dwelling species with a Holarctic range. Chaoborus albipes (Johannsen, 1903 stat. rev.) and C. posio Salmela sp. n. are pond-dwelling Holarctic and north European species, respectively. The position of the larval subordinate mandibular tooth at the vertex of the second and fourth teeth is a synapomorphy of the Chaoborus flavicans species complex. We present an identification key to fourth instar larvae, pupae, and adult males. We also designate the lectotype and paralectotypes of Sayomyia rotundifolia Felt, 1904 (syn. nov. of C. albipes). We hypothesize that a fourth species of the species complex is present in Japan. Our revision indicates that Holarctic shallow ponds contain a hidden diversity of predators (C. albipes and C. posio sp. n.). 


Sign in / Sign up

Export Citation Format

Share Document