scholarly journals The effect of repeated, lethal sampling on wild bee abundance and diversity

2015 ◽  
Vol 6 (9) ◽  
pp. 1044-1054 ◽  
Author(s):  
Zachariah J. Gezon ◽  
Eli S. Wyman ◽  
John S. Ascher ◽  
David W. Inouye ◽  
Rebecca E. Irwin
2020 ◽  
Vol 49 (2) ◽  
pp. 502-515 ◽  
Author(s):  
Brianne Du Clos ◽  
Francis A Drummond ◽  
Cynthia S Loftin

Abstract Homogeneous, agriculturally intense landscapes have abundant records of pollinator community research, though similar studies in the forest-dominated, heterogeneous mixed-use landscape that dominates the northeastern United States are sparse. Trends of landscape effects on wild bees are consistent across homogeneous agricultural landscapes, whereas reported studies in the northeastern United States have not found this consistency. Additionally, the role of noncrop habitat in mixed-use landscapes is understudied. We assessed wild bee communities in the mixed-use lowbush blueberry (Vaccinium angustifolium Ait.) production landscape of Maine, United States at 56 sites in eight land cover types across two regional landscapes and analyzed effects of floral resources, landscape pattern, and spatial scale on bee abundance and species richness. Within survey sites, cover types with abundant floral resources, including lowbush blueberry fields and urban areas, promoted wild bee abundance and diversity. Cover types with few floral resources such as coniferous and deciduous/mixed forest reduced bee abundance and species richness. In the surrounding landscape, lowbush blueberry promoted bee abundance and diversity, while emergent wetland and forested land cover strongly decreased these measures. Our analysis of landscape configuration revealed that patch mixing can promote wild bee abundance and diversity; however, this was influenced by strong variation across our study landscape. More surveys at intra-regional scales may lead to better understanding of the influence of mixed-use landscapes on bee communities.


2015 ◽  
Vol 25 (8) ◽  
pp. 2119-2131 ◽  
Author(s):  
Neal M. Williams ◽  
Kimiora L. Ward ◽  
Nathaniel Pope ◽  
Rufus Isaacs ◽  
Julianna Wilson ◽  
...  

2019 ◽  
Vol 23 (5-6) ◽  
pp. 819-830 ◽  
Author(s):  
Rachel N. Nichols ◽  
Dave Goulson ◽  
John M. Holland

Abstract Governmental agri-environment schemes (AES) aim to improve pollinator abundance and diversity on farmland by sowing wildflower seed mixes. These often contain high proportions of Fabaceae, particularly Trifolium (clovers), which are attractive to some bumblebee species, but not to most of the ~ 240 solitary bee species in the UK. Here we identify wildflowers that are attractive to a greater range of wild bee species. Forty-five wildflower species being farmed for commercial seed production on a single farm were surveyed for native bees. Bee walks were conducted through discrete wildflower areas from April until August in 2018. The results indicate that including a range of Apiaceae, Asteraceae, and Geraniaceae in seed mixes would cater for a wide diversity of bee species. A total of 14 wildflower species across nine families attracted 37 out of the 40 bee species recorded on the farm, and accounted for 99.7% of all visitations. Only two of these 14 species are included in current AES pollinator mixes. Unexpectedly, few visits were made by bumblebees to Trifolium spp. (0.5%), despite their being considered an important food source for bumblebees, while Anthyllis vulneraria and Geranium pratense were highly attractive. For solitary bees, Crepis capillaris, Sinapsis arvensis, Convolvulus arvensis and Chaerophyllum temulum were amongst the best performing species, none of which are usually included in sown flower mixes. We suggest that the standard ‘pollinator’ mixes used in AES might be updated to include some of these wildflower species, and trialled as seed mixes on farmland.


2020 ◽  
Vol 49 (6) ◽  
pp. 1437-1448 ◽  
Author(s):  
Gabriel G Foote ◽  
Nathaniel E Foote ◽  
Justin B Runyon ◽  
Darrell W Ross ◽  
Christopher J Fettig

Abstract The status of wild bees has received increased interest following recent estimates of large-scale declines in their abundances across the United States. However, basic information is limited regarding the factors affecting wild bee communities in temperate coniferous forest ecosystems. To assess the early responses of bees to bark beetle disturbance, we sampled the bee community of a Douglas-fir, Pseudotsuga menziesii (Mirb.), forest in western Idaho, United States during a Douglas-fir beetle, Dendroctonus pseudotsugae Hopkins (Coleoptera: Curculionidae), outbreak beginning in summer 2016. We resampled the area in summer 2018 following reductions in forest canopy cover resulting from mortality of dominant and codominant Douglas-fir. Overall, results from rarefaction analyses indicated significant increases in bee diversity (Shannon’s H) in 2018 compared to 2016. Results from ANOVA also showed significant increases in bee abundance and diversity in 2018 compared to 2016. Poisson regression analyses revealed percent tree mortality from Douglas-fir beetle was positively correlated with increases in total bee abundance and species richness, where community response variables displayed a cubic trend with percent tree mortality. Percent reduction in canopy cover from 2016 to 2018 was also correlated with bee species richness and diversity. These findings suggest that wild bee communities may benefit from changes in forest structure following bark beetle outbreaks.


2013 ◽  
Vol 145 (6) ◽  
pp. 655-667 ◽  
Author(s):  
Amy C. Rutgers-Kelly ◽  
Miriam H. Richards

AbstractTo investigate how bee (Hymenoptera: Apoidea) communities repopulate habitat following severe disturbances, we compared assemblages in new, regenerating landfill sites planted in 2003, recent landfill sites planted in 2000, and control meadows relatively undisturbed for >40 years. All sites were identically sampled using pan traps and sweep netting, from early May to late September 2003, equalising collection effort among sites. In addition, we carried out five-minute aerial net samplings wherever sites contained large patches of wildflowers. We predicted that abundance and diversity of bees would be highest in recent sites and lowest in new sites. This prediction was partially supported: bees were most abundant in recent sites followed by control, then new sites, but species richness was highest (82 species) in recent sites, followed by new sites (67 species), then control (66 species). A randomisation analysis showed that there were more species than expected in new sites and fewer than expected in control sites. Differences in blossom availability likely explain differences in bee abundance and diversity among habitat regeneration levels. Overall, our results suggest that the bee community recolonised newly available sites immediately in the first year and that bee diversity and abundance increased for at least three years, subsequently declining between three and 40 years.


1987 ◽  
Vol 119 (7-8) ◽  
pp. 735-745 ◽  
Author(s):  
Cynthia D. Scott-Dupree ◽  
Mark L. Winston

AbstractWild bee pollinators were collected in tree-fruit orchards and uncultivated habitats in the Okanagan Valley. Higher abundance and diversity of wild bee pollinators were found at uncultivated sites than on tree-fruit crops. Wild bees were not abundant enough in orchard habitats to provide adequate tree-fruit pollination. Variable flower visitation patterns by polylectic bees in orchard and uncultivated habitats make it difficult to predict floral visitation patterns. Therefore, orchardists cannot rely on a substantial and predictable contribution to pollination of fruit crops by wild bee species. Research into the use of wild bees as managed pollinators for tree-fruit crops in the Okanagan Valley may have potential. Future studies should consider three wild bee species collected in Okanagan Valley orchards, Bombus terricola occidentalis Greene, Bombus bifarius nearcticus Handlirsch, and Osmia lignaria propinqua Cresson, for pollination management.


Author(s):  
Hongying Li ◽  
Michael C. Orr ◽  
Ancai Luo ◽  
Feiyue Dou ◽  
Ruomei Kou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document