Numerical Approach to Study the Behavior of an Artificial Ventricle: Fluid-Structure Interaction Followed By Fluid Dynamics With Moving Boundaries

2018 ◽  
Vol 42 (10) ◽  
pp. E315-E324 ◽  
Author(s):  
Giulia Luraghi ◽  
Wei Wu ◽  
Hector De Castilla ◽  
José Félix Rodriguez Matas ◽  
Gabriele Dubini ◽  
...  
2018 ◽  
Vol 29 (04) ◽  
pp. 1850038 ◽  
Author(s):  
Chun-Lin Gong ◽  
Zhe Fang ◽  
Gang Chen

A numerical approach based on the immersed boundary (IB), lattice Boltzmann and nonlinear finite element method (FEM) is proposed to simulate hydrodynamic interactions of very flexible objects. In the present simulation framework, the motion of fluid is obtained by solving the discrete lattice Boltzmann equations on Eulerian grid, the behaviors of flexible objects are calculated through nonlinear dynamic finite element method, and the interactive forces between them are implicitly obtained using velocity correction IB method which satisfies the no-slip conditions well at the boundary points. The efficiency and accuracy of the proposed Immersed Boundary-Lattice Boltzmann-Finite Element method is first validated by a fluid–structure interaction (F-SI) benchmark case, in which a flexible filament flaps behind a cylinder in channel flow, then the nonlinear vibration mechanism of the cylinder-filament system is investigated by altering the Reynolds number of flow and the material properties of filament. The interactions between two tandem and side-by-side identical objects in a uniform flow are also investigated, and the in-phase and out-of-phase flapping behaviors are captured by the proposed method.


2021 ◽  
Author(s):  
Tobias Martin ◽  
Hans Bihs

Abstract Open ocean aquaculture cages became recently a promising alternative to traditional fish cage designs. The offshore environment implies larger loads on the structures and higher risk of fish loss. Floating rigid aquaculture cages with stiff nets are considered as a possible solution to cope with these new challenges. Their design process requires more advanced tools to account for the non-linear fluid-structure interaction. This paper presents a suitable numerical approach for analysing the interaction of offshore aquaculture cages and waves using Computational Fluid Dynamics. Here, a numerical wave tank accounts for the accurate propagation of the waves, and structural dynamics solutions are utilised for the cage system. Two-way coupling is enabled by accounting for the influence of the net on the fluid. The numerical model is validated against measurements for the loads on and the responses of a mobile floating fish farm in waves and current.


2021 ◽  
Author(s):  
Liwu Wang ◽  
Mingzhang Tang ◽  
Yu Liu ◽  
Sijun Zhang

Abstract The numerical simulation of the parachute deployment/inflation process involves fluid structure interaction problems, the inherent complexities in the fluid structure interaction have been posing several computational challenges. In this paper a high fidelity Eulerian computational approach is proposed for the simulation of parachute deployment/inflation. Unlike the arbitrary Eulerian Lagrangian (ALE) method widely employed in this area, the Eulerian computational approach is established on three computational techniques: computational fluid dynamics, computational structure dynamics and computational moving boundary. A set of stationary, non-deforming Cartesian grids is adopted in our computational fluid dynamics, our computational structure dynamics is enhanced by non-linear finite element method and membrane wrinkling algorithm, instead of conventional computational mesh dynamics, an immersed boundary method is employed to avoid insurmountable poor grid quality brought in by moving mesh approaches. To validate the proposed numerical approach the deployment/inflation of C-9 parachute is simulated using our approach and the results show similar characteristics compared with experimental results and previous literature. The computed results have demonstrated the proposed method to be a useful tool for analyzing dynamic parachute deployment and subsequent inflation.


Author(s):  
Long Liu ◽  
Hongda Li ◽  
Haisong Ang ◽  
Tianhang Xiao

A fluid–structure interaction numerical simulation was performed to investigate the flow field around a flexible flapping wing using an in-house developed computational fluid dynamics/computational structural dynamics solver. The three-dimensional (3D) fluid–structure interaction of the flapping locomotion was predicted by loosely coupling preconditioned Navier–Stokes solutions and non-linear co-rotational structural solutions. The computational structural dynamic solver was specifically developed for highly flexible flapping wings by considering large geometric non-linear characteristics. The high fidelity of the developed methodology was validated by benchmark tests. Then, an analysis of flexible flapping wings was carried out with a specific focus on the unsteady aerodynamic mechanisms and effects of flexion on flexible flapping wings. Results demonstrate that the flexion will introduce different flow fields, and thus vary thrust generation and pressure distribution significantly. In the meanwhile, relationship between flapping frequency and flexion plays an important role on efficiency. Therefore, appropriate combination of frequency and flexion of flexible flapping wings provides higher efficiency. This study may give instruction for further design of flexible flapping wings.


2018 ◽  
Vol 249 ◽  
pp. 03006 ◽  
Author(s):  
Hulin Li ◽  
Yanzhen Wang ◽  
Ning Zhong ◽  
Yonghong Chen ◽  
Zhongwei Yin

This paper used a new transient computational fluid dynamics and fluid–structure interaction method to investigate the journal bearing performance with the effect of thermal and cavitation, to reveal the performance of journal bearing in different lubricants and to provide substitution references for bearings in different lubricants. Considering thermal effect, elastic deformation and cavitation, a detailed discussion was conducted to show the performance of plain journal bearings lubricated by water, seawater, and lubricating oil by computational fluid dynamics (CFD) and fluid structure interaction (FSI) method. And the results in this work are compared with the published results. The variation of dimensionless load carrying capacity, maximum film pressure and temperature with eccentricity ratio are presented, which can provide reference for the design of bearings. Furthermore, a diagram is presented for journal bearings with different diameter, length-diameter ratio and lubricants, which can be used as a reference for the equivalent substitutions of bearings. The present research provides references as to the design of bearings and the substitutions of bearings by different lubricants.


Sign in / Sign up

Export Citation Format

Share Document