Culture of rabbit bone marrow mesenchymal stem cells on polyurethane/pyrrole surface promoted differentiation into endothelial lineage

2021 ◽  
Author(s):  
Mehdi Hassanpour ◽  
Sonia Fathi Karkan ◽  
Reza Rahbarghazi ◽  
Mohammad Nouri ◽  
Hassan Amini ◽  
...  
2008 ◽  
Vol 1 (1) ◽  
pp. 53 ◽  
Author(s):  
Simone Lapi ◽  
Francesca Nocchi ◽  
Roberta Lamanna ◽  
Simona Passeri ◽  
Mariacarla Iorio ◽  
...  

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4656 ◽  
Author(s):  
Marcello de Alencar Silva ◽  
Yulla Klinger de Carvalho Leite ◽  
Camila Ernanda Sousa de Carvalho ◽  
Matheus Levi Tajra Feitosa ◽  
Michel Muálem de Moraes Alves ◽  
...  

Background Tissue engineering has been shown to exhibit great potential for the creation of biomaterials capable of developing into functional tissues. Cellular expansion and integration depends on the quality and surface-determinant factors of the scaffold, which are required for successful biological implants. The objective of this research was to characterize and evaluate the in vitro characteristics of rabbit bone marrow mesenchymal stem cells (BM-MSCs) associated with a bacterial cellulose membrane (BCM). We assessed the adhesion, expansion, and integration of the biomaterial as well as its ability to induce macrophage activation. Finally, we evaluated the cytotoxicity and toxicity of the BCM. Methods Samples of rabbit bone marrow were collected. Mesenchymal stem cells were isolated from medullary aspirates to establish fibroblast colony-forming unit assay. Osteogenic, chondrogenic, and adipogenic differentiation was performed. Integration with the BCM was assessed by scanning electron microscopy at 1, 7, and 14 days. Cytotoxicity was assessed via the production of nitric oxide, and BCM toxicity was assessed with the MTT assay; phagocytic activity was also determined. Results The fibroblastoid colony-forming unit (CFU-F) assay showed cells with a fibroblastoid morphology organized into colonies, and distributed across the culture area surface. In the growth curve, two distinct phases, lag and log phase, were observed at 15 days. Multipotentiality of the cells was evident after induction of osteogenic, chondrogenic, and adipogenic lineages. Regarding the BM-MSCs’ bioelectrical integration with the BCM, BM-MSCs were anchored in the BCM in the first 24 h. On day 7 of culture, the cytoplasm was scattered, and on day 14, the cells were fully integrated with the biomaterial. We also observed significant macrophage activation; analysis of the MTT assay and the concentration of nitric oxide revealed no cytotoxicity of the biomaterial. Conclusion The BCM allowed the expansion and biointegration of bone marrow progenitor cells with a stable cytotoxic profile, thus presenting itself as a biomaterial with potential for tissue engineering.


Polymer Korea ◽  
2016 ◽  
Vol 40 (6) ◽  
pp. 915 ◽  
Author(s):  
Bo Ra Sim ◽  
Hye Min Kim ◽  
Soo Min Kim ◽  
Do Kyung Kim ◽  
Jeong Eun Song ◽  
...  

Heart ◽  
2010 ◽  
Vol 96 (Suppl 3) ◽  
pp. A55-A55
Author(s):  
L. Zhengzhang ◽  
C. Yingzhang ◽  
S. Zhe ◽  
X. Haoping ◽  
C. Shi

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Yi Dong ◽  
Long Chang ◽  
Long Hei ◽  
Sensen Yang ◽  
Wenxin Ma ◽  
...  

This study aims to evaluate the effect of peroxisome proliferator-activated receptor (PPAR) γ gene inhibition on the adipogenic differentiation of rabbit bone marrow mesenchymal stem cells (BMSCs). Primary BMSCs were isolated from rabbit bone marrow, cultured, and the markers of BMSCs on cell’s surface were analyzed using flow cytometry. The experiment involved five groups, namely, control: untreated BMSCs; model: BMSCs treated with ethanol; empty siRNA: BMSCs treated with ethanol + empty siRNA; PPARγ: BMSCs treated with ethanol + PPARγ siRNA; and PPARγ inhibitor: BMSCs treated with ethanol + T0070907. RT-PCR and Western blotting were used to detect changes in the expression level of PPARγ, PETALA2 (AP2), lipoprotein lipase (LPL), fatty acid transport protein (FATP) 1, and fatty acid transporter (FAT). Adipocyte count and triacylglycerol content of the model and the empty siRNA groups were considerably greater than the control group ( P < 0.01 ). After the inhibition with PPARγ or T0070907, adipocyte count and triacylglycerol content of the PPARγ and T0070907 groups were significantly reduced ( P < 0.01 ), with no statistically significantly difference than the control group ( P > 0.05 ). The expression levels of PPARγ gene and protein in the model and empty siRNA groups were ominously enhanced than the control group ( P < 0.01 ), and after inhibition with PPARγ or T0070907, the PPARγ gene or protein expression level of PPARγ and T0070907 groups significantly reduced ( P < 0.01 ), with no statistically significance difference compared to the control group ( P > 0.05 ). The expression levels of Ap2, LPL, FATP1, and FAT genes in the model and empty siRNA groups were considerably greater compared to the control group ( P < 0.01 ). Inhibition with PPARγ or T0070907 in the PPARγ and T0070907 groups, respectively, lead to significantly reduced expression levels of adipogenic genes ( P < 0.01 ), with no statistically significance difference compared to the control ( P > 0.05 ). Inhibition of PPARγ gene downregulates the differentiation of BMSCs into adipocytes, indicating its putative role in the expression of adipogenic genes.


Sign in / Sign up

Export Citation Format

Share Document