Using a high-flow nasal cannula provided superior results to low-flow oxygen delivery in moderate to severe bronchiolitis

2016 ◽  
Vol 105 (8) ◽  
pp. e368-e372 ◽  
Author(s):  
Gregorio P. Milani ◽  
Anna M. Plebani ◽  
Elisa Arturi ◽  
Danila Brusa ◽  
Susanna Esposito ◽  
...  
2021 ◽  
Author(s):  
Tommaso Mauri ◽  
Elena Spinelli ◽  
Bertrand Pavlovsky ◽  
Domenico Luca Grieco ◽  
Irene Ottaviani ◽  
...  

Background Experimental and pilot clinical data suggest that spontaneously breathing patients with sepsis and septic shock may present increased respiratory drive and effort, even in the absence of pulmonary infection. The study hypothesis was that respiratory drive and effort may be increased in septic patients and correlated with extrapulmonary determinant and that high-flow nasal cannula may modulate drive and effort. Methods Twenty-five nonintubated patients with extrapulmonary sepsis or septic shock were enrolled. Each patient underwent three consecutive steps: low-flow oxygen at baseline, high-flow nasal cannula, and then low-flow oxygen again. Arterial blood gases, esophageal pressure, and electrical impedance tomography data were recorded toward the end of each step. Respiratory effort was measured as the negative swing of esophageal pressure (ΔPes); drive was quantified as the change in esophageal pressure during the first 500 ms from start of inspiration (P0.5). Dynamic lung compliance was calculated as the tidal volume measured by electrical impedance tomography, divided by ΔPes. The results are presented as medians [25th to 75th percentile]. Results Thirteen patients (52%) were in septic shock. The Sequential Organ Failure Assessment score was 5 [4 to 9]. During low-flow oxygen at baseline, respiratory drive and effort were elevated and significantly correlated with arterial lactate (r = 0.46, P = 0.034) and inversely with dynamic lung compliance (r = –0.735, P < 0.001). Noninvasive support by high-flow nasal cannula induced a significant decrease of respiratory drive (P0.5: 6.0 [4.4 to 9.0] vs. 4.3 [3.5 to 6.6] vs. 6.6 [4.9 to 10.7] cm H2O, P < 0.001) and effort (ΔPes: 8.0 [6.0 to 11.5] vs. 5.5 [4.5 to 8.0] vs. 7.5 [6.0 to 12.6] cm H2O, P < 0.001). Oxygenation and arterial carbon dioxide levels remained stable during all study phases. Conclusions Patients with sepsis and septic shock of extrapulmonary origin present elevated respiratory drive and effort, which can be effectively reduced by high-flow nasal cannula. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New


BMJ Open ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. e037964
Author(s):  
Shahan Waheed ◽  
Nazir Najeeb Kapadia ◽  
Muhammad Faisal Khan ◽  
Salima Mansoor Kerai ◽  
Ahmed Raheem ◽  
...  

IntroductionApnoeic oxygenation is a process of delivering continuous oxygen through nasal cannula during direct laryngoscopy. The oxygen that is delivered through these nasal cannulas is either low flow or high flow. Although the effectiveness of apnoeic oxygenation has been shown through systematic reviews and randomised controlled trials, a comparison of high-flow versus low-flow oxygen delivery has not been tested through a superiority study design. In this study we propose to assess the effectiveness of giving low-flow oxygen with head side elevation versus high-flow oxygen with head side elevation against the usual practice of care in which no oxygen is provided during direct laryngoscopy.Methods and analysisThis will be a three-arm study instituting a block randomisation technique with a sample size of 46 in each arm (see table 1). Due to the nature of the intervention, no blinding will be introduced. The primary outcomes will be lowest non-invasive oxygen saturation measurement during direct laryngoscopy and during the 2 min after the placement of the tube and the first pass success rate. The intervention constitutes head side elevation up to 30° for improving glottis visualisation together with low-flow or high-flow oxygen delivery through nasal cannula to increase safe apnoea time for participants undergoing endotracheal intubation. Primary analysis will be intention to treat.Ethics and disseminationThe study is approved by the Ethical Review Committee of Aga Khan University Hospital (2019-0726-2463). The project is an institution University Research Committee grant recipient 192 002ER-PK. The results of the study will be disseminated among participants, patient communities and healthcare professionals in the institution through seminars, presentations and emails. Further, the findings will be published in a highly accessed peer-reviewed medical journal and will be presented at both national and international conferences.Trial registration numberClinicalTrials.gov Registry (NCT04242537).


JMS SKIMS ◽  
2020 ◽  
Vol 23 (3) ◽  
Author(s):  
Tajamul Hussain Shah ◽  
Suhail Mantoo ◽  
Rafi Ahmad Jan

High Flow Nasal Cannula Oxygenation The current pandemic of COVID-19 caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) tested the healthcare infrastructure throughout the globe at all possible levels. Early reports suggest about 20% of patients infected with SARS-CoV-2 require hospitalization and 5-8% require admission to intensive care unit (ICU) due to severe disease.Supplementation of oxygen provided by various conventional oxygen therapy (COT) devices (like nasal prongs, face mask, venture mask or non-rebreather mask) may not be sufficient in cases of worsening respiratory failure. One form of escalating respiratory support in such patients is a high flow nasal oxygenation device. High flow nasal cannula oxygenation (HFNC) is a form of non invasive respiratory support. It acts as a bridge between low flow devices and non invasive ventilation and may reduce the need for intubation.


2021 ◽  
Vol 36 (4) ◽  
pp. 275-285
Author(s):  
SeungYong Park

The high-flow nasal cannula (HFNC) has been recently used in several clinical settings for oxygenation in adults. In particular, the advantages of HFNC compared with low-flow oxygen systems or non-invasive ventilation include enhanced comfort, increased humidification of secretions to facilitate expectoration, washout of nasopharyngeal dead space to improve the efficiency of ventilation, provision of a small positive end-inspiratory pressure effect, and fixed and rapid delivery of an accurate fraction of inspired oxygen (FiO2) by minimizing the entrainment of room air. HFNC has been successfully used in critically ill patients with several conditions, such as hypoxemic respiratory failure, hypercapneic respiratory failure (exacerbation of chronic obstructive lung disease), post-extubation respiratory failure, pre-intubation oxygenation, and others. However, the indications are not absolute, and much of the proven benefit remains subjective and physiologic. This review discusses the practical application and clinical uses of HFNC in adults, including its unique respiratory physiologic effects, device settings, and clinical indications.


2021 ◽  
Author(s):  
Takahiro Takazono ◽  
Kazuko Yamamoto ◽  
Ryuta Okamoto ◽  
Masato Tashiro ◽  
Shimpei Morimoto ◽  
...  

ABSTRACTRationaleAerosol dispersion under various oxygen delivery modalities, including high flow nasal cannula, is a critical concern for healthcare workers who treat acute hypoxemic respiratory failure during the coronavirus disease 2019 pandemic. Effects of surgical masks on droplet and aerosol dispersion under oxygen delivery modalities are not yet clarified.ObjectivesTo visualize and quantify dispersion particles under various oxygen delivery modalities and examine the protective effect of surgical masks on particle dispersion.MethodsThree and five healthy men were enrolled for video recording and quantification of particles, respectively. Various oxygen delivery modalities including high flow nasal cannula were used in this study. Particle dispersions during rest breathing, speaking, and coughing were recorded and automatically counted in each condition and were evaluated with or without surgical masks.Measurements and Main ResultsCoughing led to the maximum amount and distance of particle dispersion, regardless of modalities. Droplet dispersion was not visually increased by oxygen delivery modalities compared to breathing at room air. With surgical masks over the nasal cannula or high-flow nasal cannula, droplet dispersion was barely visible. Oxygen modalities did not increase the particle dispersion counts regardless of breathing pattens. Wearing surgical masks significantly decreased particle dispersion in all modalities while speaking and coughing, regardless of particle sizes, and reduction rates were approximately 95 and 80-90 % for larger (> 5 μm) and smaller (> 0.5 μm) particles, respectively.ConclusionsSurgical mask over high flow nasal canula may be safely used for acute hypoxemic respiratory failure including coronavirus disease 2019 patients.Subject Category List4.13 Ventilation: Non-Invasive/Long-Term/Weaning*This article has an online data supplement, which is accessible from this issue’s table of content online at www.atsjournals.org.


2019 ◽  
Vol 64 (4) ◽  
pp. 453-461 ◽  
Author(s):  
Yasmin M Madney ◽  
Maha Fathy ◽  
Ahmed A Elberry ◽  
Hoda Rabea ◽  
Mohamed EA Abdelrahim

Sign in / Sign up

Export Citation Format

Share Document