Changes in ventilatory capacity and pulmonary gas exchange during systemic and pulmonary inflammation in humans

Apmis ◽  
2016 ◽  
Vol 125 (1) ◽  
pp. 11-15 ◽  
Author(s):  
Jacob P. Hartmann ◽  
Mathis N. Mottelson ◽  
Ronan M. G. Berg ◽  
Ronni R. Plovsing
1999 ◽  
Vol 87 (1) ◽  
pp. 132-141 ◽  
Author(s):  
Steven Deem ◽  
Richard G. Hedges ◽  
Steven McKinney ◽  
Nayak L. Polissar ◽  
Michael K. Alberts ◽  
...  

Severe anemia is associated with remarkable stability of pulmonary gas exchange (S. Deem, M. K. Alberts, M. J. Bishop, A. Bidani, and E. R. Swenson. J. Appl. Physiol. 83: 240–246, 1997), although the factors that contribute to this stability have not been studied in detail. In the present study, 10 Flemish Giant rabbits were anesthetized, paralyzed, and mechanically ventilated at a fixed minute ventilation. Serial hemodilution was performed in five rabbits by simultaneous withdrawal of blood and infusion of an equal volume of 6% hetastarch; five rabbits were followed over a comparable time. Ventilation-perfusion (V˙a/Q˙) relationships were studied by using the multiple inert-gas-elimination technique, and pulmonary blood flow distribution was assessed by using fluorescent microspheres. Expired nitric oxide (NO) was measured by chemiluminescence. Hemodilution resulted in a linear fall in hematocrit over time, from 30 ± 1.6 to 11 ± 1%. Anemia was associated with an increase in arterial [Formula: see text] in comparison with controls ( P < 0.01 between groups). The improvement in O2 exchange was associated with reducedV˙a/Q˙heterogeneity, a reduction in the fractal dimension of pulmonary blood flow ( P = 0.04), and a relative increase in the spatial correlation of pulmonary blood flow ( P = 0.04). Expired NO increased with anemia, whereas it remained stable in control animals ( P < 0.0001 between groups). Anemia results in improved gas exchange in the normal lung as a result of an improvement in overallV˙a/Q˙matching. In turn, this may be a result of favorable changes in pulmonary blood flow distribution, as assessed by the fractal dimension and spatial correlation of blood flow and as a result of increased NO availability.


Respiration ◽  
1978 ◽  
Vol 35 (3) ◽  
pp. 136-147 ◽  
Author(s):  
P. Jebavý ◽  
J. Fabián ◽  
M. Henzlová ◽  
A. Belán

1992 ◽  
Vol 9 (3) ◽  
pp. 252-257 ◽  
Author(s):  
Th. Wanke ◽  
D. Formanek ◽  
M. Auinger ◽  
H. Zwick ◽  
K. Irsigler

2009 ◽  
Vol 106 (6) ◽  
pp. 1902-1908 ◽  
Author(s):  
Roberto Rodríguez-Roisin ◽  
Mitra Drakulovic ◽  
Diego A. Rodríguez ◽  
Josep Roca ◽  
Joan Albert Barberà ◽  
...  

Chronic obstructive pulmonary disease (COPD) is characterized by a decline in forced expiratory volume in 1 s (FEV1) and, in many advanced patients, by arterial hypoxemia with or without hypercapnia. Spirometric and gas exchange abnormalities have not been found to relate closely, but this may reflect a narrow range of severity in patients studied. Therefore, we assessed the relationship between pulmonary gas exchange and airflow limitation in patients with COPD across the severity spectrum. Ventilation-perfusion (V̇A/Q̇) mismatch was measured using the multiple inert gas elimination technique in 150 patients from previous studies. The distribution of patients according to the GOLD stage of COPD was: 15 with stage 1; 40 with stage 2; 32 with stage 3; and 63 with stage 4. In GOLD stage 1, AaPo2 and V̇A/Q̇ mismatch were clearly abnormal; thereafter, hypoxemia, AaPo2, and V̇A/Q̇ imbalance increased, but the changes from GOLD stages 1–4 were modest. Postbronchodilator FEV1 was related to PaO2 ( r = 0.62) and PaCO2 ( r = −0.59) and to overall V̇A/Q̇ heterogeneity ( r = −0.48) ( P < 0.001 each). Pulmonary gas exchange abnormalities in COPD are related to FEV1 across the spectrum of severity. V̇A/Q̇ imbalance, predominantly perfusion heterogeneity, is disproportionately greater than airflow limitation in GOLD stage 1, suggesting that COPD initially involves the smallest airways, parenchyma, and pulmonary vessels with minimal spirometric disturbances. That progression of V̇A/Q̇ inequality with spirometric severity is modest may reflect pathogenic processes that reduce both local ventilation and blood flow in the same regions through airway and alveolar disease and capillary involvement.


2000 ◽  
Vol 89 (2) ◽  
pp. 721-730 ◽  
Author(s):  
Susan R. Hopkins ◽  
Rebecca C. Barker ◽  
Tom D. Brutsaert ◽  
Timothy P. Gavin ◽  
Pauline Entin ◽  
...  

Exercise-induced arterial hypoxemia (EIAH) has been reported in male athletes, particularly during fast-increment treadmill exercise protocols. Recent reports suggest a higher incidence in women. We hypothesized that 1-min incremental (fast) running (R) protocols would result in a lower arterial Po 2 (PaO2 ) than 5-min increment protocols (slow) or cycling exercise (C) and that women would experience greater EIAH than previously reported for men. Arterial blood gases, cardiac output, and metabolic data were obtained in 17 active women [mean maximal O2 uptake (V˙o 2 max) = 51 ml · kg−1 · min−1]. They were studied in random order (C or R), with a fastV˙o 2 max protocol. After recovery, the women performed 5 min of exercise at 30, 60, and 90% ofV˙o 2 max (slow). One week later, the other exercise mode (R or C) was similarly studied. There were no significant differences in V˙o 2 maxbetween R and C. Pulmonary gas exchange was similar at rest, 30%, and 60% of V˙o 2 max. At 90% ofV˙o 2 max, PaO2 was lower during R (mean ± SE = 94 ± 2 Torr) than during C (105 ± 2 Torr, P < 0.0001), as was ventilation (85.2 ± 3.8 vs. 98.2 ± 4.4 l/min btps, P < 0.0001) and cardiac output (19.1 ± 0.6 vs. 21.1 ± 1.0 l/min, P < 0.001). Arterial Pco 2 (32.0 ± 0.5 vs. 30.0 ± 0.6 Torr, P < 0.001) and alveolar-arterial O2 difference (A-aDo 2; 22 ± 2 vs. 16 ± 2 Torr, P < 0.0001) were greater during R. PaO2 and A-aDo 2 were similar between slow and fast. Nadir PaO2 was ≤80 Torr in four women (24%) but only during fast-R. In all subjects, PaO2 atV˙o 2 max was greater than the lower 95% prediction limit calculated from available data in men ( n = 72 C and 38 R) for both R and C. These data suggest intrinsic differences in gas exchange between R and C, due to differences in ventilation and also efficiency of gas exchange. The PaO2 responses to R and C exercise in our 17 subjects do not differ significantly from those previously observed in men.


Sign in / Sign up

Export Citation Format

Share Document