Functional diversity of ground-layer plant communities in old-growth and managed northern hardwood forests

2013 ◽  
Vol 17 (3) ◽  
pp. 398-407 ◽  
Author(s):  
Francesco M. Sabatini ◽  
Julia I. Burton ◽  
Robert M. Scheller ◽  
Kathryn L. Amatangelo ◽  
David J. Mladenoff
Ecology ◽  
1964 ◽  
Vol 45 (3) ◽  
pp. 448-459 ◽  
Author(s):  
Edward Flaccus ◽  
Lewis F. Ohmann

2002 ◽  
Vol 32 (9) ◽  
pp. 1562-1576 ◽  
Author(s):  
Gregory G McGee ◽  
Robin W Kimmerer

The objective of this study was to assess the influence of substrate heterogeneity on epiphytic bryophyte communities in northern hardwood forests of varying disturbance histories. Specifically, we compared bryophyte abundance (m2·ha–1) and community composition among partially cut; maturing, 90- to 100-year-old, even-aged; and old-growth northern hardwood stands in Adirondack Park, New York, U.S.A. Total bryophyte cover from 0 to 1.5 m above ground level on trees [Formula: see text]10 cm diameter at breast height (DBH) did not differ among the three stand types. However, bryophyte community composition differed among host tree species and among stand types. Communities in partially cut and maturing stands were dominated by xerophytic bryophytes (Platygyrium repens, Frullania eboracensis, Hypnum pallescens, Brachythecium reflexum, Ulota crispa), while old-growth stands contained a greater representation of calcicoles and mesophytic species (Brachythecium oxycladon, Anomodon rugelii, Porella platyphylloidea, Anomodon attenuatus, Leucodon brachypus, Neckera pennata). This mesophyte-calcicole assemblage occurred in all stand types but was limited by the abundance of large-diameter (>50 cm DBH), thick-barked, hardwood host trees (Acer saccharum Marsh., Tilia americana L., Fraxinus americana L.). This study suggested that epiphytic bryophyte diversity can be sustained and enhanced in managed northern hardwood forests by maintaining host tree species diversity and retaining large or old, thick-barked residual hardwood stems when applying even-aged and uneven-aged silviculture systems.


1998 ◽  
Vol 28 (3) ◽  
pp. 427-438 ◽  
Author(s):  
John M Goodburn ◽  
Craig G Lorimer

The effects of uneven-aged management on the availability of coarse woody debris habitat were examined in northern hardwood forests (with and without a hemlock component) in north-central Wisconsin and adjacent western Upper Michigan. Snags, cavity trees, fallen wood, and recent tip-up mounds in 15 managed uneven-aged (selection) stands were compared with levels in 10 old-growth stands and six unmanaged even-aged second-growth stands. Amounts of coarse woody debris in selection stands were generally intermediate between old-growth and even-aged stands. Density of snags >30 cm DBH in northern hardwood selection stands averaged 12/ha, approximately double that found in even-aged northern hardwoods, but only 54% of the level in old-growth northern hardwoods. Highest densities of snags >30 cm DBH occurred in old-growth hemlock-hardwood stands, averaging over 40 snags/ha. For combined forest types, the volume of fallen wood (>10 cm in diameter) was significantly lower in selection stands (60 m3/ha) and even-aged stands (25 m3/ha) than in old-growth stands (99 m3/ha). Volume differences were even more pronounced for large-diameter debris (>40 cm). Cavity tree density in selection stands averaged 11 trees/ha, 65% of the mean number in old-growth stands. Densities of snags (>30 cm DBH) and large-diameter cavity trees (>45 cm) present in selection stands exceeded current guidelines for wildlife tree retention on public forests.


Sign in / Sign up

Export Citation Format

Share Document