A fibrinogen concentrate Haemocomplettan®(Riastap®) or a Factor XIII concentrate Fibrogammin®combined with a mini dose of tranexamic acid can reverse the fibrin instability to fibrinolysis induced by thrombin- or FXa-inhibitor

2013 ◽  
Vol 160 (6) ◽  
pp. 806-816 ◽  
Author(s):  
Shu He ◽  
Hans Johnsson ◽  
Michal Zabczyk ◽  
Kjell Hultenby ◽  
Honglie Cao ◽  
...  
1975 ◽  
Vol 33 (03) ◽  
pp. 573-585 ◽  
Author(s):  
Masahiro Iwamoto

SummaryInteractions between tranexamic acid and protein were studied in respect of the antifibrinolytic actions of tranexamic acid. Tranexamic acid did neither show any interaction with fibrinogen or fibrin, nor was incorporated into cross-linked fibrin structure by the action of factor XIII. On the other hand, tranexamic acid bound to human plasmin with a dissociation constant of 3.5 × 10−5 M, which was very close to the inhibition constant (3.6 × 10−5 M) for this compound in inhibiting plasmin-induced fibrinolysis. The binding site of tranexamic acid on plasmin was not the catalytic site of plasmin, because TLCK-blocked plasmin also showed a similar affinity to tranexamic acid (the dissociation constant, 2.9–4.8 × 10−5 M).In the binding studies with the highly purified plasminogen and TLCK-plasmin preparations which were obtained by affinity chromatography on lysine-substituted Sepharose, the molar binding ratio was shown to be 1.5–1.6 moles tranexamic acid per one mole protein.On the basis of these and other findings, a model for the inhibitory mechanism of tranexamic acid is presented.


2014 ◽  
Vol 111 (03) ◽  
pp. 417-428 ◽  
Author(s):  
Hans Johnsson ◽  
Michal Zabczyk ◽  
Kjell Hultenby ◽  
Håkan Wallen ◽  
Margareta Blombäck ◽  
...  

SummaryIn trauma patients, resuscitation treatment of intravascular volume may cause haemodilution including blood cell- and plasma-dilution. After plasma-dilution, fibrinogen is the first factor that decreases to critically low concentrations. Fibrin formed in lowered levels is susceptible to fibrinolysis, a natural forerunner for bleeding. To assess whether a fibrinogen concentrate or a factor XIII (FXIII) concentrate can reverse the impairment of fibrin properties after plasma dilution, different laboratory methods were used to determine thrombin generation and fibrin quantity/quality in a normal plasma sample diluted in vitro. Coagulation and clot lysis by plasmin were triggered with tissue factor and rt-PA, respectively. We found that while the endogenous thrombin potential (ETP) was unaffected after plasma-dilution due to postponement of thrombin decay, levels of fibrinogen and hence fibrin were decreased in dilution degree-dependency. The imbalance between influence of the dilution on thrombin activity and fibrin formation brought unexpected outcomes of fibrin properties: the formed clots favoured the degradation by plasmin but the fibrin networks remained tighter/less permeable. This proteolytic tendency was partly overturned by the fibrinogen concentrate added (total fibrinogen ≥ 2 g/l), and much more affected if used in combination with tranexamic acid (a fibrinolysis inhibitor) at small doses. No reversal effect resulted from the FXIII concentrate added. We conclude that plasma-dilution did reduce the proteolytic resistance of formed clots. The fibrinogen concentrate, better together with small doses of tranexamic acid, may reverse the impairment of fibrin property. The FXIII concentrate is not effective in this regard in our in vitro model using platelet-poor plasma.


2008 ◽  
Vol 106 (5) ◽  
pp. 1360-1365 ◽  
Author(s):  
Thorsten Haas ◽  
Dietmar Fries ◽  
Corinna Velik-Salchner ◽  
Christian Reif ◽  
Anton Klingler ◽  
...  

2020 ◽  
Author(s):  
Tobias Koller ◽  
Nadia Kinast ◽  
Andres Guilarte Castellanos ◽  
Sergio Perez Garcia ◽  
Pilar Paniagua Iglesias ◽  
...  

Abstract Background: Colloid fluids supplemented with adequate combinations of coagulation factor concentrates with capability to restore coagulation could be a desirable future treatment component in massive transfusion.Methods: Starting from a coagulation factor and blood cell free albumin solution we added Prothrombin Complex Concentrate, Fibrinogen Concentrate and Factor XIII in different combinations and concentrations to analyze their properties to restore thromboelastometry parameters without the use of plasma. Further analysis under presence of platelets was performed for comparability to whole blood conditions.Results: Albumin solutions enriched with Fibrinogen Concentrate, Factor XIII and Prothrombin Complex Concentrate at optimized concentrations show restoring coagulation potential. Prothrombin Complex Concentrate showed sufficient thrombin formation for inducing fibrinogen polymerization. The combination of Prothrombin Complex Concentrate and Fibrinogen Concentrate led to the formation of a stable in vitro fibrin clot. Fibrinogen and Factor XIII showed excellent capacity to improve fibrin clot firmness expressed as Amplitude at 10 minutes and Maximal Clot Firmness. Fibrinogen alone, or in combination with Factor XIII, was able to restore normal Amplitude at 10 minutes and Maximal Clot Firmness values. In the presence of platelets, the thromboelastometry surrogate parameter for thrombin generation (Clotting Time) improves and normalizes when compared to whole blood.Conclusions: Combinations of coagulation factor concentrates suspended in albumin solutions have the capacity to restore thromboelastometry parameters in the absence of plasma. This kind of artificial colloid fluids with coagulation-restoring characteristics might offer new treatment alternatives for massive transfusion.Trial registration: Study registered at the institutional ethic committee “Institut de Recerca, Hospital Santa Creu i Sant Pau, with protocol number IIBSP-CFC-2013-165.


2021 ◽  
Author(s):  
Tobias Koller ◽  
Nadia Kinast ◽  
Andres Guilarte Castellanos ◽  
Sergio Perez Garcia ◽  
Pilar Paniagua Iglesias ◽  
...  

Abstract Background: Colloid fluids supplemented with adequate combinations of coagulation factor concentrates with the capability to restore coagulation could be a desirable future treatment component in massive transfusion.Methods: Starting from a coagulation factor and blood cell-free albumin solution we added Prothrombin Complex Concentrate, Fibrinogen Concentrate and Factor XIII in different combinations and concentrations to analyze their properties to restore thromboelastometry parameters without the use of plasma. Further analysis under the presence of platelets was performed for comparability to whole blood conditions.Results: Albumin solutions enriched with Fibrinogen Concentrate, Factor XIII and Prothrombin Complex Concentrate at optimized concentrations show restoring coagulation potential. Prothrombin Complex Concentrate showed sufficient thrombin formation for inducing fibrinogen polymerization. The combination of Prothrombin Complex Concentrate and Fibrinogen Concentrate led to the formation of a stable in vitro fibrin clot. Fibrinogen and Factor XIII showed excellent capacity to improve fibrin clot firmness expressed as Amplitude at 10 minutes and Maximal Clot Firmness. Fibrinogen alone, or in combination with Factor XIII, was able to restore normal Amplitude at 10 minutes and Maximal Clot Firmness values. In the presence of platelets, the thromboelastometry surrogate parameter for thrombin generation (Clotting Time) improves and normalizes when compared to whole blood.Conclusions: Combinations of coagulation factor concentrates suspended in albumin solutions can restore thromboelastometry parameters in the absence of plasma. This kind of artificial colloid fluids with coagulation-restoring characteristics might offer new treatment alternatives for massive transfusion.Trial registration: Study registered at the institutional ethic committee “Institut de Recerca, Hospital Santa Creu i Sant Pau, with protocol number IIBSP-CFC-2013-165.


Transfusion ◽  
2017 ◽  
Vol 57 (10) ◽  
pp. 2502-2510 ◽  
Author(s):  
Melissa M. Cushing ◽  
Meghann M. Fitzgerald ◽  
Rebecca M. Harris ◽  
Lars M. Asmis ◽  
Thorsten Haas

Shock ◽  
2014 ◽  
Vol 41 ◽  
pp. 44-46 ◽  
Author(s):  
Herbert Schöchl ◽  
Christoph J. Schlimp ◽  
Marc Maegele

Sign in / Sign up

Export Citation Format

Share Document