fibrinogen concentrate
Recently Published Documents


TOTAL DOCUMENTS

330
(FIVE YEARS 93)

H-INDEX

39
(FIVE YEARS 6)

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1034-1034
Author(s):  
Nina Moiseiwitsch ◽  
Kimberly A Nellenbach ◽  
Nina A Guzzetta ◽  
Ashley C Brown ◽  
Laura Downey

Abstract Introduction: Bleeding is a serious complication among neonates undergoing cardiopulmonary bypass (CPB) and it is linked to significant morbidity and mortality. Current standard of care treatment for bleeding after CPB focuses on the transfusion of adult blood products, including platelets and cryoprecipitate. However, prior work by Nellenbach et al. has demonstrated structural differences between neonatal and adult clotting components. Importantly, neonatal and adult fibrin do not fully integrate during clot formation which may contribute to ineffective clot formation and/or increased thrombotic risk following transfusion of adult cryoprecipitate to neonates. There has been increased interest in using human fibrinogen concentrate (HFC) in treating bleeding in the post-CPB neonate; however, HFC has not been validated in this population through evidence-based means. This study analyzed structural and degradation properties of post-CPB clots +/- the ex vivo addition of HFC and compared structural and degradation properties of post-CPB clots after the in vivo transfusion of HFC versus cryoprecipitate. Methods: Human neonatal plasma samples were collected from patients undergoing CPB at the Children's Hospital of Atlanta. For ex vivo studies, samples were taken at baseline, post-bypass, and post-transfusion of cryoprecipitate (n = 18 patients). Clots were formed for analysis from samples alone as well as post-bypass samples with the addition of 0.5 or 0.9 mg/mL HFC (RiaSTAP, CSL Behring) and structure was examined through confocal microscopy. Clot degradation was assessed through a microfluidic fibrinolysis assay. For in vivo studies, samples were taken at baseline, post-transfusion of cryoprecipitate or HFC, upon ICU arrival, and at 24 hours post-surgery (n = 36 patients). Clots were formed from samples and structure was examined through confocal microscopy. Clot degradation was assessed through a plate-based fibrinolysis assay. Results: In ex vivo studies, clot structural analysis demonstrated no significant differences in fiber density between samples collected at different time points (baseline = 0.541 ± 0.105, post-bypass = 0.431 ± 0.111, post-transfusion = 0.594 ± 0.170). The addition of 0.5 mg/mL or 0.9 mg/mL HFC to post-bypass samples led to a significant increase in fiber density (0.5 mg/mL HFC=0.654 ± 0.158, p=0.02; 0.9 mg/mL HFC= 0.797 ± 0.193, p<0.0001). Functional microfluidic analysis of clot degradation demonstrated significantly faster degradation times among post-bypass samples when compared to baseline samples (baseline degradation rate = 11.061 ± 6.087, post-bypass degradation rate = 25.906 ± 9.990 microns/hour, p=0.04). The addition of 0.5 mg/mL HFC resulted in a slower degradation rate from the original post-CPB degradation rate, but did not reach statistical significance (0.5 mg/mL HFC=14.091 ± 2.241, p=0.14). However, the addition of 0.9 mg/mL HFC resulted in a significantly slower degradation rate (0.9 mg/mL HFC=8.594 ± 6.087, p=0.01). Studies comparing in vivo transfusion of cryoprecipitate and HFC demonstrated no significant difference between treatment groups in clot density or degradation rate for any sample time point. Conclusion: We identify patterns in structural properties of clots formed after the transfusion of HFC that are consistent with successful hemostasis. However, caution is warranted regarding potentially thrombotic risks and should be carefully analyzed in future studies. Figure: Effect of Ex Vivo HFC Addition on Clot Structure and Degradation. (A) Representative confocal imaging of clots formed from different samples and HFC dosages (scale = 50 um). (B) Effect of HFC Addition on Clot Fiber Density. Addition of both 0.5 and 0.9 mg/mL HFC dosages to post-bypass sample result in statistically significant increases in fiber density compared to post-bypass samples. (C) Effect of HFC Addition on Clot Degradation Profiles. Addition of 0.9 mg/mL HFC to post-bypass sample leads to statistically significant slower fibrinolysis. Figure 1 Figure 1. Disclosures Brown: Selsym Biotech, Inc.: Other: Co-Founder and CEO. OffLabel Disclosure: RiaSTAP (human fibrinogen concentrate) is FDA approved for the treatment of congenital hypofibrinogenemia.


2021 ◽  
Vol 10 (17) ◽  
pp. 3930
Author(s):  
Nicole Innerhofer ◽  
Benjamin Treichl ◽  
Christopher Rugg ◽  
Dietmar Fries ◽  
Markus Mittermayr ◽  
...  

Fibrinogen supplementation is recommended for treatment of severe trauma hemorrhage. However, required dosages and aimed for post-treatment fibrinogen levels remain a matter of discussion. Within the published RETIC study, adult patients suffering trauma-induced coagulopathy were randomly assigned to receive fibrinogen concentrate (FC) as first-line (n = 50) or crossover rescue (n = 20) therapy. Depending on bodyweight, a single dose of 3, 4, 5, or 6 g FC was administered and repeated if necessary (FibA10 < 9 mm). The dose-dependent response (changes in plasma fibrinogen and FibA10) was analyzed. Receiver operating characteristics (ROC) analysis regarding the need for massive transfusion and correlation analyses regarding fibrinogen concentrations and polymerization were performed. Median FC single doses amounted to 62.5 (57 to 66.66) mg.kg−1. One FC single-dose sufficiently corrected fibrinogen and FibA10 (median fibrinogen 213 mg.dL−1, median FibA10 11 mm) only in patients with baseline fibrinogen above 100 mg.dL−1 and FibA10 above 5 mm, repeated dosing was required in patients with lower baseline fibrinogen/FibA10. Fibrinogen increased by 83 or 107 mg.dL−1 and FibA10 by 4 or 4.5 mm after single or double dose of FC, respectively. ROC curve analysis revealed post-treatment fibrinogen levels under 204.5 mg.dL−1 to predict the need for massive transfusion (AUC 0.652; specificity: 0.667; sensitivity: 0.688). Baseline fibrinogen/FibA10 levels should be considered for FC dosing as only sufficiently corrected post-treatment levels limit transfusion requirements.


2021 ◽  
Author(s):  
Farahnaz Rayatdoost ◽  
Till Braunschweig ◽  
Benjamin Maron ◽  
Herbert Schöchl ◽  
Necib Akman ◽  
...  

Background Life-threatening bleeding requires prompt reversal of the anticoagulant effects of factor Xa inhibitors. This study investigated the effectiveness of four-factor prothrombin complex concentrate in treating trauma-related hemorrhage with rivaroxaban-anticoagulation in a pig polytrauma model. This study also tested the hypothesis that the combined use of a low dose of prothrombin complex concentrate plus tranexamic acid and fibrinogen concentrate could improve its subtherapeutic effects. Methods Trauma (blunt liver injury and bilateral femur fractures) was induced in 48 anesthetized male pigs after 30 min of rivaroxaban infusion (1 mg/kg). Animals in the first part of the study received prothrombin complex concentrate (12.5, 25, and 50 U/kg). In the second part, animals were treated with 12.5 U/kg prothrombin complex concentrate plus tranexamic acid or plus tranexamic acid and fibrinogen concentrate. The primary endpoint was total blood loss postinjury. The secondary endpoints (panel of coagulation parameters and thrombin generation) were monitored for 240 min posttrauma or until death. Results The first part of the study showed that blood loss was significantly lower in the 25 U/kg prothrombin complex concentrate (1,541 ± 269 ml) and 50 U/kg prothrombin complex concentrate (1,464 ± 108 ml) compared with control (3,313 ± 634 ml), and 12.5 U/kg prothrombin complex concentrate (2,671 ± 334 ml, all P &lt; 0.0001). In the second part of the study, blood loss was significantly less in the 12.5 U/kg prothrombin complex concentrate plus tranexamic acid and fibrinogen concentrate (1,836 ± 556 ml, P &lt; 0.001) compared with 12.5 U/kg prothrombin complex concentrate plus tranexamic acid (2,910 ± 856 ml), and there were no early deaths in the 25 U/kg prothrombin complex concentrate, 50 U/kg prothrombin complex concentrate, and 12.5 U/kg prothrombin complex concentrate plus tranexamic acid and fibrinogen concentrate groups. Histopathologic analyses postmortem showed no adverse events. Conclusions Prothrombin complex concentrate effectively reduced blood loss, restored hemostasis, and balanced thrombin generation. A multimodal hemostatic approach using tranexamic acid plus fibrinogen concentrate enhanced the effect of low doses of prothrombin complex concentrate, potentially reducing the prothrombin complex concentrate doses required for effective bleeding control. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New


2021 ◽  
pp. 1-8
Author(s):  
M. Joseph John ◽  
Poojitha Byreddy ◽  
Ketan Modak ◽  
Mridul Makkar

Congenital fibrinogen deficiency is an inherited disorder due to genetic mutations with diverse presentations arising from reduced fibrinogen levels (hypofibrinogenemia), absence of fibrinogen in circulation (afibrinogenemia), abnormal functioning (dysfibrinogenemia) or both reduced levels and abnormal functioning (hypodysfibrinogenemia) of fibrinogen. The decreased fibrinogen concentration in congenital fibrinogen deficiency necessitates fibrinogen replacement therapy with fresh frozen plasma, cryoprecipitate, or human fibrinogen concentrate. However, the use of fresh frozen plasma and cryoprecipitate is limited owing to their longer transfusion time, requirement of high doses, volume overload, risk of viral transmission, and other safety concerns. The availability of human fibrinogen concentrate has made it the preferred replacement alternative due to its reduced risk of viral transmission, smaller infusion volume, and accurate dosing. The hemostatic efficacy and safety of human fibrinogen concentrate in congenital fibrinogen deficiency is well established in the literature. We review the prevalence of congenital fibrinogen deficiency in India and the current role of human fibrinogen concentrate in its management.


Sign in / Sign up

Export Citation Format

Share Document