scholarly journals High-density lipoprotein inhibits human M1 macrophage polarization through redistribution of caveolin-1

2015 ◽  
Vol 173 (4) ◽  
pp. 741-751 ◽  
Author(s):  
Man K S Lee ◽  
Xiao-Lei Moore ◽  
Yi Fu ◽  
Annas Al-Sharea ◽  
Dragana Dragoljevic ◽  
...  
Author(s):  
Huijun Chen ◽  
Jing Gao ◽  
Qian Xu ◽  
Dongmei Wan ◽  
Wenji Zhai ◽  
...  

The present study aims to explore the role of microRNA 145-5p (miR-145-5p) in hyperlipidemia. Using bioinformatics tools and a wide range of function and mechanism assays, we attempted to understand the specific function and potential mechanism of miR-145-5p in hyperlipidemia. A cholesterol-enriched diet induced an increase of serum cholesterol and triacylglycerol but a decrease of serum high-density lipoprotein. MiR-145-5p level was decreased in hyperlipidemia rat models. MiR-145-5p regulated lipid metabolism by antagonizing the alteration of high-density lipoprotein, cholesterol, and triacylglycerol in serum mediated by a cholesterol-enriched diet. In mechanism, miR-145-5p directly bound with p21 protein (RAC1)-activated kinase 7 (PAK7) and negatively regulated mRNA and protein levels of PAK7 in THP-1 cells. Furthermore, miR-145-5p level was negatively associated with PAK7 level in rat cardiac tissues. Finally, overexpression of PAK7 reversed the effects of miR-145-5p on β-catenin activation and M2 macrophages polarization in THP-1 cells. In conclusion, MiR-145-5p modulated lipid metabolism and M2 macrophage polarization by targeting PAK7 and regulating β-catenin signaling in hyperlipidemia, which may provide a potential biomarker for the treatment of hyperlipidemia-induced cardiovascular diseases.


2001 ◽  
Vol 268 (21) ◽  
pp. 5609-5616 ◽  
Author(s):  
Sergey Matveev ◽  
Annette Uittenbogaard ◽  
Deneys van der Westhuyzen ◽  
Eric J. Smart

Biochemistry ◽  
2001 ◽  
Vol 40 (36) ◽  
pp. 10892-10900 ◽  
Author(s):  
Philippe G. Frank ◽  
Anna Pedraza ◽  
David E. Cohen ◽  
Michael P. Lisanti

2000 ◽  
Vol 41 (12) ◽  
pp. 1952-1962 ◽  
Author(s):  
Reijiro Arakawa ◽  
Sumiko Abe-Dohmae ◽  
Michiyo Asai ◽  
Jin-ichi Ito ◽  
Shinji Yokoyama

VASA ◽  
2014 ◽  
Vol 43 (3) ◽  
pp. 189-197 ◽  
Author(s):  
Yiqiang Zhan ◽  
Jinming Yu ◽  
Rongjing Ding ◽  
Yihong Sun ◽  
Dayi Hu

Background: The associations of triglyceride (TG) to high-density lipoprotein cholesterol ratio (HDL‑C) and total cholesterol (TC) to HDL‑C ratio and low ankle brachial index (ABI) were seldom investigated. Patients and methods: A population based cross-sectional survey was conducted and 2982 participants 60 years and over were recruited. TG, TC, HDL‑C, and low-density lipoprotein cholesterol (LDL-C) were assessed in all participants. Low ABI was defined as ABI ≤ 0.9 in either leg. Multiple logistic regression models were applied to study the association between TG/HDL‑C ratio, TC/HDL‑C ratio and low ABI. Results: The TG/HDL‑C ratios for those with ABI > 0.9 and ABI ≤ 0.9 were 1.28 ± 1.20 and 1.48 ± 1.13 (P < 0.0001), while the TC/HDL‑C ratios were 3.96 ± 1.09 and 4.32 ± 1.15 (P < 0.0001), respectively. After adjusting for age, gender, body mass index, obesity, current drinking, physical activity, hypertension, diabetes, lipid-lowering drugs, and cardiovascular disease history, the odds ratios (ORs) with 95 % confidence intervals (CIs) of low ABI for TG/HDL‑C ratio and TC/HDL‑C ratio were 1.10 (0.96, 1.26) and 1.34 (1.14, 1.59) in non-smokers. When TC was further adjusted, the ORs (95 % CIs) were 1.40 (0.79, 2.52) and 1.53 (1.21, 1.93) for TG/HDL‑C ratio and TC/HDL‑C ratio, respectively. Non-linear relationships were detected between TG/HDL‑C ratio and TC/HDL‑C ratio and low ABI in both smokers and non-smokers. Conclusions: TC/HDL‑C ratio was significantly associated with low ABI in non-smokers and the association was independent of TC, TG, HDL‑C, and LDL-C. TC/HDL‑C might be considered as a potential biomarker for early peripheral arterial disease screening.


Sign in / Sign up

Export Citation Format

Share Document