Testing normal fault growth models by seismic stratigraphic architecture: the case of the Pliocene‐Quaternary Fucino Basin (Central Apennines, Italy)

2021 ◽  
Author(s):  
Stefano Patruno ◽  
Vittorio Scisciani
AAPG Bulletin ◽  
2017 ◽  
Vol 101 (02) ◽  
pp. 265-288 ◽  
Author(s):  
Yin Liu ◽  
Qinghua Chen ◽  
Xi Wang ◽  
Kai Hu ◽  
Shaolei Cao ◽  
...  

2021 ◽  
Author(s):  
Emma A. H. Michie ◽  
Mark J. Mulrooney ◽  
Alvar Braathen

Abstract. Significant uncertainties occur through varying methodologies when interpreting faults using seismic data. These uncertainties are carried through to the interpretation of how faults may act as baffles/barriers or increase fluid flow. How fault segments are picked when interpreting structures, i.e. what seismic line spacing is specified, as well as what surface generation algorithm is used, will dictate how detailed the surface is, and hence will impact any further interpretation such as fault seal or fault growth models. We can observe that an optimum spacing for fault interpretation for this case study is set at approximately 100 m. It appears that any additional detail through interpretation with a line spacing of ≤ 50 m adds complexity associated with sensitivities by the individual interpreter. Further, the location of all fault segmentation identified on Throw-Distance plots using the finest line spacing are also observed when 100 m line spacing is used. Hence, interpreting at a finer scale may not necessarily improve the subsurface model and any related analysis, but in fact lead to the production of very rough surfaces, which impacts any further fault analysis. Interpreting on spacing greater than 100 m often leads to overly smoothed fault surfaces that miss details that could be crucial, both for fault seal as well as for fault growth models. Uncertainty in seismic interpretation methodology will follow through to fault seal analysis, specifically for analysis of whether in situ stresses combined with increased pressure through CO2 injection will act to reactivate the faults, leading to up-fault fluid flow/seep. We have shown that changing picking strategies alter the interpreted stability of the fault, where picking with an increased line spacing has shown to increase the overall fault stability. Picking strategy has shown to have minor, although potentially crucial, impact on the predicted Shale Gouge Ratio.


2021 ◽  
Author(s):  
Sofia Pechlivanidou ◽  
Anneleen Geurts ◽  
Guillaume Duclaux ◽  
Robert Gawthorpe ◽  
Christos Pennos ◽  
...  

Understanding the impact of tectonics on surface processes and the resultant stratigraphic evolution in multi-phase rifts is challenging, as patterns of erosion and deposition related to older phases of extension are overprinted by the subsequent extensional phases. In this study, we use a one-way coupled numerical modelling approach between a tectonic and a surface processes model to investigate topographic evolution, erosion and basin stratigraphy during single and multi-phase rifting. We compare the results from the single and the multi-phase rift experiments for a 5 Myr period during which they experience equal amounts of extension, but with the multi-phase experiment experiencing fault topography inherited from a previous phase of extension. Our results demonstrate a very dynamic evolution of the drainage network that occurs in response to fault growth and linkage and, to depocentre overfilling and overspilling. However, we observe profound differences between topographic and depocenter development during single and multi-phase rifting with implications for sedimentary facies development. Our quantitative approach, enables us to better understand the impact of changing extension direction on the distribution of sediment source areas and the syn-rift stratigraphic development through time and space.


2008 ◽  
Vol 30 (10) ◽  
pp. 1288-1299 ◽  
Author(s):  
R. Soliva ◽  
A. Benedicto ◽  
R.A. Schultz ◽  
L. Maerten ◽  
L. Micarelli

2015 ◽  
Vol 55 (2) ◽  
pp. 467
Author(s):  
Alexander Robson ◽  
Rosalind King ◽  
Simon Holford

The authors used three-dimensional (3D) seismic reflection data from the central Ceduna Sub-Basin, Australia, to establish the structural evolution of a linked normal fault assemblage at the extensional top of a gravitationally driven delta system. The fault assemblage presented is decoupled at the base of a marine mud from the late Albian age. Strike-linkage has created a northwest–southeast oriented assemblage of normal fault segments and dip-linkage through Santonian strata, which connects a post-Santonian normal fault system to a Cenomanian-Santonian listric fault system. Cenomanian-Santonian fault growth is on the kilometre scale and builds an underlying structural grain, defining the geometry of the post-Santonian fault system. A fault plane dip-angle model has been created and established through simplistic depth conversion. This converts throw into fault plane dip-slip displacement, incorporating increasing heave of a listric fault and decreasing in dip-angle with depth. The analysis constrains fault growth into six evolutionary stages: early Cenomanian nucleation and radial growth of isolated fault segments; linkage of fault segments by the latest Cenomanian; latest Santonian Cessation of fault growth; erosion and heavy incision during the continental break-up of Australia and Antarctica (c. 83 Ma); vertically independent nucleation of the post-Santonian fault segments with rapid length establishment before significant displacement accumulation; and, continued displacement into the Cenozoic. The structural evolution of this fault system is compatible with the isolated fault model and segmented coherent fault model, indicating that these fault growth models do not need to be mutually exclusive to the growth of normal fault assemblages.


Sign in / Sign up

Export Citation Format

Share Document