scholarly journals Assessing avian diversity and community composition along a successional gradient in traditional Lacandon Maya agroforests

Biotropica ◽  
2020 ◽  
Vol 52 (6) ◽  
pp. 1242-1252
Author(s):  
Tomasz B. Falkowski ◽  
José Raúl Vázquez‐Pérez ◽  
Adolfo Chankin ◽  
Atzin Yetlanezi Campos‐Beltrán ◽  
José L. Rangel‐Salazar ◽  
...  
2009 ◽  
Vol 27 (4) ◽  
pp. 449-457 ◽  
Author(s):  
B. F. M. Olechnowski ◽  
D. M. Debinski ◽  
P. Drobney ◽  
K. Viste-Sparkman ◽  
W. T. Reed

2020 ◽  
Author(s):  
Zachary Steel ◽  
Alissa Fogg ◽  
Ryan Burnett ◽  
L. Jay Roberts ◽  
Hugh Safford

Aim: Modern wildfires increasingly create large high-severity patches with interior areas far from less disturbed habitats. We evaluated how these trends impact montane bird communities by investigating the effect of internal distance to lower severity areas, high-severity patch size, and years since fire on avian alpha and beta diversity.Location:Sierra Nevada Mountains, California, USAMethods:Bird occurrence data were collected during 2009-2017 within high-severity patches of 27 wildfires representing 1-30 years since disturbance. A two-step multispecies occupancy method was used to account for imperfect detection of 94 species and estimate effects of high-severity patch characteristics on community richness and dissimilarity as well as richness of nesting guilds. Results:Community richness decreased with distance from patch edge and with high-severity patch size. Richness increased with years since fire, but this pattern was mediated by distance to edge with higher peak richness (23 species) on the patch edges than interiors (18 species). Community dissimilarity was not explained by distance from edge or patch area indicating that interiors of large high-severity patches contain a subset of rather than a complement to the edge community. Guild richness of tree and primary cavity nesters was negatively associated with distance and patch size. Richness of ground and shrub nesters was insensitive to these metrics but due to declines among other species, the groups made up a greater percentage of the avian community within patch interiors.Main conclusions:As fire activity increases due to accumulating forest fuels and accelerating climate change, high-severity patches and their resulting early-seral habitats are becoming more extensive with less edge and more interior area. Such changes are likely to decrease avian diversity locally and shift community composition away from forest-associated species. Management actions that promote the full range of fire effects but limit the size of high-severity patches may best conserve bird diversity within fire-adapted ecosystems.


Biotropica ◽  
2014 ◽  
Vol 46 (2) ◽  
pp. 210-218 ◽  
Author(s):  
Margaret Nyafwono ◽  
Anu Valtonen ◽  
Philip Nyeko ◽  
Heikki Roininen

Author(s):  
Zachary L. Steel ◽  
Alissa M. Fogg ◽  
Ryan Burnett ◽  
L. Jay Roberts ◽  
Hugh D. Safford

2021 ◽  
Author(s):  
Xie He ◽  
Maximilian Hanusch ◽  
Victoria Ruiz-Hernández ◽  
Robert R. Junker

SummaryDue to climate warming, recently deglaciated glacier forefields create virtually uninhabited substrates waiting for initial colonization of bacteria, fungi and plants and serve as an ideal ecosystem for studying transformations in community composition and diversity over time and the interactions between taxonomic groups.In this study, we investigated the composition and diversity of bacteria, and fungi, plants and environmental factors (pH, temperature, plot age and soil nutrients) along a 1.5km glacier forefield. We used random forest analysis to detect how well the composition and diversity of taxonomic groups and environmental factors can be mutually predicted.Community composition and diversity of taxonomic groups predicted each other more accurately than environmental factors predicted the taxonomic groups; within the taxonomic groups bacteria and fungi predicted each other best and the taxa’s composition was better predicted than diversity indices. Additionally, accuracy of prediction among taxonomic groups and environmental factors considerably varied along the successional gradient.Although our results are no direct indication of interactions between the taxa investigated and the environmental conditions, the accurate predictions among bacteria, fungi, and plants do provide insights into the concerted community assembly of different taxa in response to changing environments along a successional gradient.


2019 ◽  
Author(s):  
Coline Deveautour ◽  
Sally Power ◽  
Kirk Barnett ◽  
Raul Ochoa-Hueso ◽  
Suzanne Donn ◽  
...  

Climate models project overall a reduction in rainfall amounts and shifts in the timing of rainfall events in mid-latitudes and sub-tropical dry regions, which threatens the productivity and diversity of grasslands. Arbuscular mycorrhizal fungi may help plants to cope with expected changes but may also be impacted by changing rainfall, either via the direct effects of low soil moisture on survival and function or indirectly via changes in the plant community. In an Australian mesic grassland (former pasture) system, we characterised plant and arbuscular mycorrhizal (AM) fungal communities every six months for nearly four years to two altered rainfall regimes: i) ambient, ii) rainfall reduced by 50% relative to ambient over the entire year and iii) total summer rainfall exclusion. Using Illumina sequencing, we assessed the response of AM fungal communities sampled from contrasting rainfall treatments and evaluated whether variation in AM fungal communities was associated with variation in plant community richness and composition. We found that rainfall reduction influenced the fungal communities, with the nature of the response depending on the type of manipulation, but that consistent results were only observed after more than two years of rainfall manipulation. We observed significant co-associations between plant and AM fungal communities on multiple dates. Predictive co-correspondence analyses indicated more support for the hypothesis that fungal community composition influenced plant community composition than vice versa. However, we found no evidence that altered rainfall regimes were leading to distinct co-associations between plants and AM fungi. Overall, our results provide evidence that grassland plant communities are intricately tied to variation in AM fungal communities. However, in this system, plant responses to climate change may not be directly related to impacts of altered rainfall regimes on AM fungal communities. Our study shows that AM fungal communities respond to changes in rainfall but that this effect was not immediate. The AM fungal community may influence the composition of the plant community. However, our results suggest that plant responses to altered rainfall regimes at our site may not be resulting via changes in the AM fungal communities.


2019 ◽  
Vol 83 (3) ◽  
pp. 295-308
Author(s):  
MG Weinbauer ◽  
S Suominen ◽  
J Jezbera ◽  
ME Kerros ◽  
S Marro ◽  
...  

2020 ◽  
Vol 637 ◽  
pp. 159-180
Author(s):  
ND Gallo ◽  
M Beckwith ◽  
CL Wei ◽  
LA Levin ◽  
L Kuhnz ◽  
...  

Natural gradient systems can be used to examine the vulnerability of deep-sea communities to climate change. The Gulf of California presents an ideal system for examining relationships between faunal patterns and environmental conditions of deep-sea communities because deep-sea conditions change from warm and oxygen-rich in the north to cold and severely hypoxic in the south. The Monterey Bay Aquarium Research Institute (MBARI) remotely operated vehicle (ROV) ‘Doc Ricketts’ was used to conduct seafloor video transects at depths of ~200-1400 m in the northern, central, and southern Gulf. The community composition, density, and diversity of demersal fish assemblages were compared to environmental conditions. We tested the hypothesis that climate-relevant variables (temperature, oxygen, and primary production) have more explanatory power than static variables (latitude, depth, and benthic substrate) in explaining variation in fish community structure. Temperature best explained variance in density, while oxygen best explained variance in diversity and community composition. Both density and diversity declined with decreasing oxygen, but diversity declined at a higher oxygen threshold (~7 µmol kg-1). Remarkably, high-density fish communities were observed living under suboxic conditions (<5 µmol kg-1). Using an Earth systems global climate model forced under an RCP8.5 scenario, we found that by 2081-2100, the entire Gulf of California seafloor is expected to experience a mean temperature increase of 1.08 ± 1.07°C and modest deoxygenation. The projected changes in temperature and oxygen are expected to be accompanied by reduced diversity and related changes in deep-sea demersal fish communities.


Sign in / Sign up

Export Citation Format

Share Document