Lizard and frog removal increases spider abundance but does not cascade to increase herbivory

Biotropica ◽  
2020 ◽  
Author(s):  
Karen H. Beard ◽  
Susan L. Durham ◽  
Michael R. Willig ◽  
Jess K. Zimmerman
Keyword(s):  

2018 ◽  
Vol 35 (3-4) ◽  
pp. 319-324 ◽  
Author(s):  
Joh R Henschel ◽  
Yael Lubin
Keyword(s):  


2017 ◽  
Vol 107 (0) ◽  
Author(s):  
Luciana R. Podgaiski ◽  
◽  
Gilberto G. Rodrigues ◽  

ABSTRACT Conservation of biodiversity in agroecosystems is an urgent need, and a suitable approach to maximize animal biodiversity and their services is the restoration of habitat heterogeneity. Here we investigated the value of increasing litter complexity in tree plantations of exotic pine for ground spiders. We hypothesized that increasing the litter complexity of these systems, as it would be the case in ecologically designed plantations, would increase spider aggregations. We performed a small-scale litter manipulation experiment within an exotic pine stand in the municipality of Minas do Leão, Rio Grande do Sul, Brazil, and compared spider diversity in simple (only pine needles) and complex substrates (with the addition of diverse native broadleaves). We found 1,110 spiders, 19 families and 32 morphospecies. The most abundant families were Linyphiidae, Theridiidae and Salticidade, and the dominant morphospecies were Thymoites sp. 2 and Lygarina sp. Web-building spiders represented 61% of total spider abundance, and 17 species, while hunting spiders, 49% and 15 species. As expected, densities of spider individuals and species from both web-building and hunting spiders were higher in complex litter substrate. Potential preys (Collembola) also responded positively to the treatment, and had influence of spider community patterns. Our results suggest that ensuring some degree of plant and litter diversity within pine stands (e.g. understory establishment) might foster spider aggregations and possibly help to conserve their diversity at local-scales.



2020 ◽  
Author(s):  
Dylan G. E. Gomes ◽  
Thomas Hesselberg ◽  
Jesse R. Barber


2010 ◽  
Vol 36 (4) ◽  
pp. 476-484 ◽  
Author(s):  
THIAGO GONÇALVES-SOUZA ◽  
MÁRIO ALMEIDA-NETO ◽  
GUSTAVO Q. ROMERO


Biologia ◽  
2014 ◽  
Vol 69 (7) ◽  
Author(s):  
Thomas Mérő ◽  
Maja Janjatović ◽  
Roland Horváth ◽  
Katarina Mrkobrad ◽  
Antun Žuljević

AbstractThe appearance of spider (Araneae) and beetle (Coleoptera) assemblages found in nests of great reed warbler Acrocephalus arundinaceus was studied, firstly to investigate breeding success and the amount of precipitation as potential factors which might affect the abundance and species richness of both groups. In addition, we compared the diversity of spider and beetle assemblages between nests found in different reed habitats, and considered the position of nests (above water or dry ground). In this study we selected five different randomly chosen reed habitats: two mining ponds, two small canals and one large canal. Great Reed Warbler nests were collected either shortly after fledging, or after the clutch had failed. Altogether, 12 species of spider and 19 species of beetle were collected. In both groups there was no significant difference in abundance between successful, lost and cuckoo-parasitized nests; however, there was a significant difference in species richness between the three nest categories in spider assemblages, which was not the case in beetle assemblages. The amount of precipitation did not affect beetle or spider abundance; only the species richness of spiders showed significant growth. Furthermore, we found no significant relationship between vegetation cover and the species richness and abundance of spiders and beetles. The diversity of both groups differed significantly according to reed habitat: beetle assemblages were most diverse by the large canal and spiders at the mining ponds.





2008 ◽  
Vol 68 (2) ◽  
pp. 229-232 ◽  
Author(s):  
RR. Faria ◽  
TN. Lima

The aim of this study was to analyze: i) the spider community in vegetative and reproductive branches of Psychotria carthagenensis concerning relative abundance, guild composition and body size distribution; ii) ant abundance in diferent types of branches and iii) the spider behavior when experimentally put in contact with inflorescences covered with ants. There was no difference between vegetative and reproductive branches in relation to spider abundance, composition of guilds and body size distribution of spiders. However, there was a significant difference in ant abundance. In the behavioral experiment, 90% of the spiders were expelled from inflorescences by ants; in control treatment, 100% remained in the inflorescences. The ant density in different parts of the plant may explain the spider distribution.



2018 ◽  
Vol 6 ◽  
pp. e24974 ◽  
Author(s):  
Leticia Bao ◽  
Juaquín Ginella ◽  
Mónica Cadenazzi ◽  
Enrique Castiglioni ◽  
Sebastián Martínez ◽  
...  

The rice crop and associated ecosystems constitute a rich mosaic of habitats that preserve a rich biological diversity. Spiders are an abundant and successful group of natural predators that are considered efficient in the biocontrol of the major insect pests in agroecosystems. Spider diversity in different stages of the rice crop growth from eastern Uruguay was analysed. Field study was developed on six rice farms with rotation system with pasture, installed during intercropping stage as cover crop. Six rice crops distributed in three locations were sampled with pitfall and entomological vaccum suction machine. Sixteen families, representing six guilds, were collected. Lycosidae, Linyphiidae, Anyphaenidae and Tetragnathidae were the most abundant families (26%, 25%, 20% and 12%, respectively) and comprised more than 80% of total abundance. Other hunters (29%), sheet web weavers (25%) and ground hunters (24%) were the most abundant guilds. Species composition along different crop stages was significantly different according to the ANOSIM test. The results showed higher spider abundance and diversity along the crop and intercrop stages. This study represents the first contribution to the knowledge of spider diversity associated with rice agroecosystem in the country.



PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e6049 ◽  
Author(s):  
Enrico Lunghi

The orb-weaver spider Meta bourneti Simon 1922 (Araneae: Tetragnathidae) is one of the most common cave predators occurring in the Mediterranean basin. Although the congeneric M. menardi represented the model species in several studies, our knowledge of M. bourneti is only founded on observations performed on a handful of populations. In this study M. bourneti spiders were studied in caves of Monte Albo (Sardinia, Italy) over a year. Generalized Linear Mixed Models were used to analyze spider occupancy inside cave environments, as well as spider abundance. Analyses on M. bourneti occupancy and abundance were also repeated for adults and juveniles separately. Generalized Linear Models, were used to weight species absence based on its detection probability. Linear Mixed Models were used to detect possible divergences in subterranean spatial use between adult and juvenile spiders. Although widespread on the mountain, M. bourneti generally showed low density and low detection probability. Most of the individuals observed were juveniles. The spiders generally occupied cave sectors with high ceilings that were deep enough to show particular microclimatic features. Adults tended to occupy less illuminated areas than juveniles, while the latter were more frequently found in sectors showing high humidity. The abundance of M. bourneti was strongly related to high humidity and the presence of two troglophile species, Hydromantes flavus Wake, Salvador & Alonso-Zarazaga, 2005 (Amphibia: Caudata) and Oxychilus oppressus (Shuttleworth, 1877) (Gastropoda: Panpulmonata). The abundance of juveniles was related to sector temperature and humidity, the presence of H. flavus and O. oppressus and to morphological sector features. However, when only adults were considered, no significant relationships were found. Adult and juvenile spiders did not differ in their spatial distribution inside the caves studied, but a seasonal distribution of the species along cave walls was observed. Microclimate was one of the most important features affecting both the presence and abundance of M. bourneti in subterranean environments. Individuals tended to occupy lower heights during hot seasons.



2020 ◽  
Vol 20 (4) ◽  
Author(s):  
Genefer E. R. dos Santos ◽  
Kleber Solera ◽  
Cristiano A. da Costa ◽  
Marinêz I. Marques ◽  
Antonio D. Brescovit ◽  
...  

Abstract: Forest fragments in urban areas comprise important habitats for a wide variety of species, however, conservationist policies for their maintenance and conservation are still incipient. This study examined the richness and abundance of the ground-spider assemblage in five forest fragments, with areas ranging between 18.5 and 103.98 ha, in the urban perimeter of Sinop, northern Mato Grosso State, southern Amazon region of Brazil. Sampling was carried out using the mini-Winkler extractor and pitfall traps in the dry (July) and rainy (November) seasons of 2017. All fragments were characterized in relation to the area and the Index of Biotic Integrity (IBI), to assess the effect of these variables on richness and abundance of soil spider assemblage. A total of 653 spiders were sampled, corresponding to 25 families and 52 species. Salticidae, Theridiidae, Lycosidae, Linyphiidae, Oonopidae and Symphytognathidae were the most abundant families (63.3% of the total sample). The assemblage was characterized by the dominance of hunting spiders (393 ind.; 60.2%) over web-building spiders (260 ind.; 39.8%). Greater spider abundance and richness was obtained during the rainy season (517 ind.; 79.2%; 41 spp.) as compared with the dry season (136 ind.; 20.8%; 24 spp.). Only 13 species occurred in dry and rainy season. Two species were recorded for the first time in the Amazon region, namely, Anapistula aquytabueraRheims & Brescovit, 2003 (Symphytognathidae) and Opopaea concolor (Blackwall, 1859) (Oonopidae). Species richness was not affected by IBI and area of fragment. Although the statistical model is not significant, species richness increases slightly with IBI and area of fragment. Similarly, abundance of spiders was not affected by IBI and area of fragment. Regardless of the area size, all evaluated forest fragments showed a low and regular IBI, demonstrating that these habitats have suffered with the pressures inherent from the urban perimeter, including the constant expansion of human occupation as well as misuse by the population. Nonetheless, these same fragments revealed considerable richness of species of ground spiders and can thus be categorized as important habitats for the maintenance of regional biodiversity. Therefore, action strategies must be set out to ensure their conservation.



Sign in / Sign up

Export Citation Format

Share Document