Whole-exome sequencing identifies a homozygous donor splice-site mutation inSTAG3that causes primary ovarian insufficiency

2017 ◽  
Vol 93 (2) ◽  
pp. 340-344 ◽  
Author(s):  
W.-B. He ◽  
S. Banerjee ◽  
L.-L. Meng ◽  
J. Du ◽  
F. Gong ◽  
...  
Author(s):  
Carolina Carlosama ◽  
Maëva Elzaiat ◽  
Liliana C. Patiño ◽  
Heidi E. Mateus ◽  
Reiner A. Veitia ◽  
...  

2021 ◽  
Author(s):  
Peng Tu ◽  
Hairui Sun ◽  
Xiaohang Zhang ◽  
Qian Ran ◽  
suzhen Ran ◽  
...  

Abstract Background: Left ventricular non-compaction cardiomyopathy (LVNC) is a rare congenital heart defect (CHD), genetics defects have been found in patients with LVNC and their family members; and MYH7 is the most common genetic associated with LVNC. Methods: A trio (fetus and the parents) whole-exome sequencing (WES) was performed when the fetus was found with Ebstein's anomaly (EA), heart dilatation, perimembranous ventricular septal defects (VSD), mild seroperitoneum and single umbilical artery (SUA).Results: Whole-exome sequencing identified a maternal inherited heterozygous splice site mutation in MYH7 (NM_000257.3:c.732+1G>A). Subsequent Sanger sequencing confirmed that the mutation was heterozygous in the fetus, the old sister, the grandmother, and the mother. QPCR experiment using RNA from blood lymphocytes but were unable to amplify any product.Conclusion: This familial case underlines that the striking cardiac phenotypic of MYH7 mutation (the c.732+1G>A spice site variant) may be highly variable. The mechanistic studies which could uncover candidate genes modulating cardiac phenotype associated with LVNC/EA should be proceed.


2016 ◽  
Vol 56 (3) ◽  
pp. 135-137 ◽  
Author(s):  
Fatma Bastaki ◽  
Madiha Mohamed ◽  
Pratibha Nair ◽  
Fatima Saif ◽  
Nafisa Tawfiq ◽  
...  

Gene ◽  
2022 ◽  
pp. 146158
Author(s):  
Souradip Chatterjee ◽  
Shashank Gupta ◽  
Vidya Nair Chaudhry ◽  
Prashaant Chaudhry ◽  
Ashim Mukherjee ◽  
...  

2010 ◽  
Vol 162 (6) ◽  
pp. 1384-1387 ◽  
Author(s):  
C. Covaciu ◽  
M. Castori ◽  
N. De Luca ◽  
P. Ghirri ◽  
A. Nannipieri ◽  
...  

2019 ◽  
Author(s):  
Mei Sim Lung ◽  
Catherine A. Mitchell ◽  
Maria A. Doyle ◽  
Andrew C. Lynch ◽  
Kylie L. Gorringe ◽  
...  

Abstract Background Familial cases of appendiceal mucinous tumours (AMTs) are extremely rare and the underlying genetic aetiology uncertain. We identified potential predisposing germline genetic variants in a father and daughter with AMTs presenting with pseudomyxoma peritonei (PMP) and correlated these with regions of loss of heterozygosity (LOH) in the tumours. Materials and Methods Through germline whole exome sequencing, we identified novel heterozygous loss-of-function (LoF) (i.e. nonsense, frameshift and essential splice site mutations) and missense variants shared between father and daughter, and validated all LoF variants, and missense variants with a Combined Annotation Dependent Depletion (CADD) scaled score of ≥10. Genome-wide copy number analysis was performed on tumour tissue from both individuals to identify regions of LOH. Results Seventeen novel variants in 17 genes were shared by the father and daughter: a nonsense mutation in REEP5 , an essential splice site mutation in THOP1 , and 15 missense variants. None of these germline variants were located in tumour regions of LOH shared by the father and daughter. Four genes ( EXOG , RANBP2, RANBP6 and TNFRSF1B ) harboured missense variants that fell in a region of LOH in the tumour from the father only, but none showed somatic loss of the wild type allele in the tumour. The REEP5 gene was sequenced in 23 individuals with presumed sporadic PMP; no LoF or rare missense germline variants were identified. Conclusion Germline exome sequencing of a father and daughter with AMTs identified novel candidate predisposing genes. Further studies are required to clarify the role of these genes in familial AMTs.


Sign in / Sign up

Export Citation Format

Share Document