Exome sequencing reveals three homozygous missense variants inSNRPAin two sisters with syndromic intellectual disability

2018 ◽  
Vol 93 (6) ◽  
pp. 1229-1233 ◽  
Author(s):  
M.M. Rangel-Sosa ◽  
L.E. Figuera-Villanueva ◽  
I.A. González-Ramos ◽  
Y.X. Pérez-Páramo ◽  
L.A. Martínez-Jacobo ◽  
...  
2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 1039.1-1039
Author(s):  
A. Barinotti ◽  
M. Radin ◽  
I. Cecchi ◽  
S. G. Foddai ◽  
E. Rubini ◽  
...  

Background:Antiphospholipid Syndrome (APS) is an autoimmune disease whose precise aetiology is still unknown, but the high heterogeneity of its manifestations and clinical course is presumably due to the occurrence of different mechanisms and alterations at different levels and pathways [1]. The first genetic studies in APS focused primarily on the human leukocytes antigen system region, but more recent data highlighted a role of other genes in APS susceptibility, primarily those involved in the immune response and in the haemostatic process.Objectives:We aimed to deepen the investigation of APS genetic background starting from a case of familial APS, analysing two siblings with thrombotic APS (Table 1), both triple positive for antiphospholipid antibodies (aPL).Table 1.Main clinical and laboratory characteristics of the patients included in the study.PatientAgeaPL ProfileRelevant Clinical History1 (F)51Triple positive (LA, aCL IgG, aβ2GPI IgG)Two episodes of ischemic stroke, one episode of CAPS (renal thrombotic microangiopathy, visual impairment, ischemic stroke)2 (M)47Triple positive (LA, aCL IgG, aβ2GPI IgG)Three episodes of deep vein thrombosis, regardless ongoing well conducted therapy vitamin k antagonist and additional retinal vein thrombosisLA: lupus anticoagulant; aCL: anti-cardiolipin antibodies; aβ2GPI: anti- β2 glycoprotein I antibodies; CAPS: catastrophic APS.Methods:Genomic DNA was extracted from peripheral blood and the samples underwent Whole Exome Sequencing (WES). Sequencing was done on a 100X coverage, and reads have been aligned to the human reference genome (GRCh37/hg19 assembly) using the Burrows–Wheeler Alignment tool (BWA). The mean sequencing depth on target regions was 170X for patient 1, 205X for patient 2, moreover, 99.50% of the targeted bases had at least 10X coverage for all the three donors. The resulting single nucleotide polymorphisms (SNPs) have been analysed through a step-by-step process based on their frequency population (using Genome Aggregation Database), their predicted effects on the protein (using VarSome) and a literature research about the genes carrying them. Moreover, genes previously associated with a pro-thrombotic tendency and with APS have been analysed in the two patients.Results:Starting from more than 120000 SNPs for each patients, the analysis led to reduce the list of SNPs of interest to 27 missense mutations. The complete literature research regarding the genes carrying these mutations allowed to further reduce the number of selected genes, focusing on those that exert a role potentially involved in APS pathogenesis and development. In particular, these genes (PLA2G6, HSPG2, BCL3, ZFAT, ATP2B2, CRTC3 and ADCY3) take part in the immune response and the vascular homeostasis. The list of the DNA missense variants of interest found in our cases of familial APS is resumed in Figure 2.Figure 2.List of DNA missense variants of interest found in patient 1 and 2. Genes potentially involved in APS pathogenesis and development are highlighted in bold.No mutations on genes known to be associated with a pro-thrombotic state (F5, F2, MTHFR, F13A1, PROC, PROS1, FGB and SERPINE1), or on genes previously associated with APS (B2GPI, PF4V1, SELP, TLR2, TLR4, GP Ia, GP1BA, F2R, F2RL1, TFPI, F3, VEGFA, FLT1, and TNF) have been found in the WES analysis.Conclusion:To some extent, this can be seen as a proof of concept of the complexity of APS. Efforts to interpret the genetic risk factors involved in the heterogeneous clinical features of the syndrome, for instance, the integration of WES and network-based approaches might help to identify and stratify patients at risk of developing APS.References:[1]Iuliano A, Galeazzi M, Sebastiani GD. Antiphospholipid syndrome’s genetic and epigenetic aspects. Autoimmun Rev. 2019;18(9).Disclosure of Interests:None declared


Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 1001
Author(s):  
Jiyoon Han ◽  
Joonhong Park

A simultaneous analysis of nucleotide changes and copy number variations (CNVs) based on exome sequencing data was demonstrated as a potential new first-tier diagnosis strategy for rare neuropsychiatric disorders. In this report, using depth-of-coverage analysis from exome sequencing data, we described variable phenotypes of epilepsy, intellectual disability (ID), and schizophrenia caused by 12p13.33–p13.32 terminal microdeletion in a Korean family. We hypothesized that CACNA1C and KDM5A genes of the six candidate genes located in this region were the best candidates for explaining epilepsy, ID, and schizophrenia and may be responsible for clinical features reported in cases with monosomy of the 12p13.33 subtelomeric region. On the background of microdeletion syndrome, which was described in clinical cases with mild, moderate, and severe neurodevelopmental manifestations as well as impairments, the clinician may determine whether the patient will end up with a more severe or milder end‐phenotype, which in turn determines disease prognosis. In our case, the 12p13.33–p13.32 terminal microdeletion may explain the variable expressivity in the same family. However, further comprehensive studies with larger cohorts focusing on careful phenotyping across the lifespan are required to clearly elucidate the possible contribution of genetic modifiers and the environmental influence on the expressivity of 12p13.33 microdeletion and associated characteristics.


2013 ◽  
Vol 68 (3) ◽  
pp. 191-193 ◽  
Author(s):  
Joep de Ligt ◽  
Marjolein H. Willemsen ◽  
Bregje W. M. van Bon ◽  
Tjitske Kleefstra ◽  
Helger G. Yntema ◽  
...  

Author(s):  
J Fonseca ◽  
C Melo ◽  
C Ferreira ◽  
M Sampaio ◽  
R Sousa ◽  
...  

AbstractEarly infantile epileptic encephalopathy-64 (EIEE 64), also called RHOBTB2-related developmental and epileptic encephalopathy (DEE), is caused by heterozygous pathogenic variants (EIEE 64; MIM#618004) in the Rho-related BTB domain-containing protein 2 (RHOBTB2) gene. To date, only 13 cases with RHOBTB2-related DEE have been reported. We add to the literature the 14th case of EIEE 64, identified by whole exome sequencing, caused by a heterozygous pathogenic variant in RHOBTB2 (c.1531C > T), p.Arg511Trp. This additional case supports the main features of RHOBTB2-related DEE: infantile-onset seizures, severe intellectual disability, impaired motor functions, postnatal microcephaly, recurrent status epilepticus, and hemiparesis after seizures.


2021 ◽  
Vol 38 (1) ◽  
Author(s):  
Ehtisham ul Haq Makhdoom ◽  
Haseeb Anwar ◽  
Shahid Mahmood Baig ◽  
Ghulam Hussain

Background & Objectives: Primary Microcephaly (MCPH) is a rare neurogenetic disease, manifesting congenitally reduced head circumference and non-progressive intellectual disability (ID). To date, twenty-eight genes with biallelic mutations have been reported for this disorder. The study aimed for molecular genetic characterization of Pakistani families segregating MCPH. Methods: We studied two unrelated consanguineous families (family A and B) presenting >2 patients with diagnostic symptoms of MCPH, born to asymptomatic parents. We employed whole-exome sequencing (WES) of probands to find putative causal mutations. The candidate variants were further confirmed and analyzed for co-segregation by Sanger sequencing of all available members of each family. This study was conducted at Government College University, Faisalabad, Pakistan, and Cologne Center for Genomics (CCG), University of Cologne, Germany; during 2017-2020. Results: We identified a novel homozygous variant c.10097_10098delGA, p.(Gly3366Glufs*19) in exon 26 of ASPM gene in family A which presents with moderate intellectual disability, speech impairment, visual abnormalities, seizures, and ptyalism. Family B was found to segregate nonsense, homozygous variant c.448C>T p.(Arg150*) in CDK5RAP2. The patients also exhibited mild to severe seizures without ptyalism that has not been previously reported in patients with mutations in the CDK5RAP2 gene. Conclusion: We report a novel mutation in ASPM and ultra-rare mutation in the CDK5RAP2 gene, both causing primary microcephaly. The study expands the mutational spectrum of the ASPM gene to 212, and also adds to the clinical spectrum of CDK5RAP2 mutations. It also demonstrated the utility of WES in the investigation and genetic diagnosis of genetically heterogeneous disorders like MCPH. These findings would aid in diagnostic and preventive strategies including carrier screening, cascade testing, and genetic counselling. doi: https://doi.org/10.12669/pjms.38.1.4464 How to cite this:Makhdoom EH, Anwar H, Baig SM, Hussain G. Whole exome sequencing identifies a novel mutation in ASPM and ultra-rare mutation in CDK5RAP2 causing Primary microcephaly in consanguineous Pakistani families. Pak J Med Sci. 2022;38(1):---------.  doi: https://doi.org/10.12669/pjms.38.1.4464 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


2021 ◽  
Author(s):  
Franziska Paul ◽  
Calista Ng ◽  
Shahriar Nafissi ◽  
Yalda Nilipoor ◽  
Ali Reza Tavasoli ◽  
...  

Rabenosyn (RBSN) is a conserved endosomal protein necessary for regulating internalized cargo. Here, we present genetic, cellular and biochemical evidence that two distinct RBSN missense variants are responsible for a novel Mendelian disorder consisting of progressive muscle weakness, facial dysmorphisms, ophthalmoplegia and intellectual disability. Using exome sequencing, we identified recessively-acting germline alleles p.Arg180Gly and p.Gly183Arg which are both situated in the FYVE domain of RBSN. We find that these variants abrogate binding to its cognate substrate PI3P and thus prevent its translocation to early endosomes. Although the endosomal recycling pathway was unaltered, mutant p.Gly183Arg patient fibroblasts exhibit accumulation of cargo tagged for lysosomal degradation. Our results suggest that these variants are separation-of-function alleles, which cause a delay in endosomal maturation without affecting cargo recycling. We conclude that distinct germline mutations in RBSN cause non-overlapping phenotypes with specific and discrete endolysosomal cellular defects.


Sign in / Sign up

Export Citation Format

Share Document